Toxicological risk assessment of cyano blooms & cyanotoxins

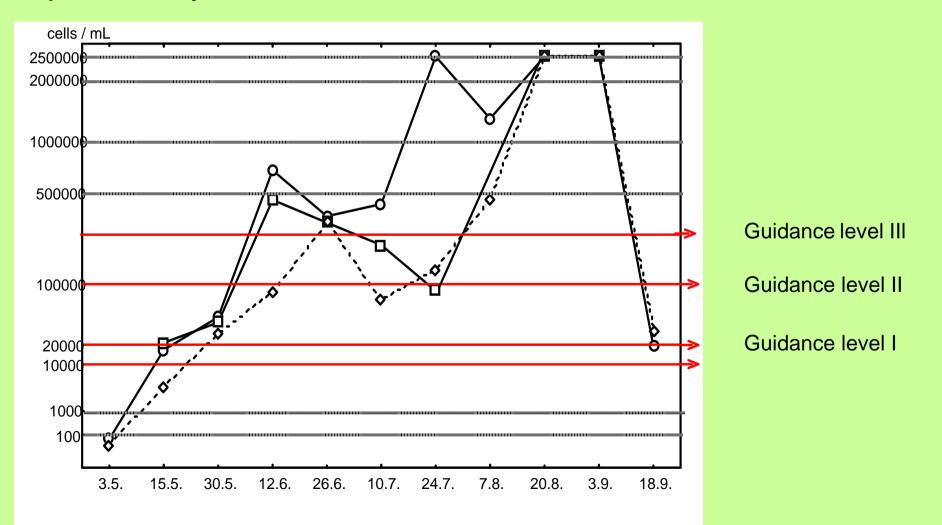
Blahoslav Marsalek Institute of Botany In cooperation with RAWAT consulting for HYDAP Kick-off meeting Basic parameters used in risks evaluation of cyanotoxins:

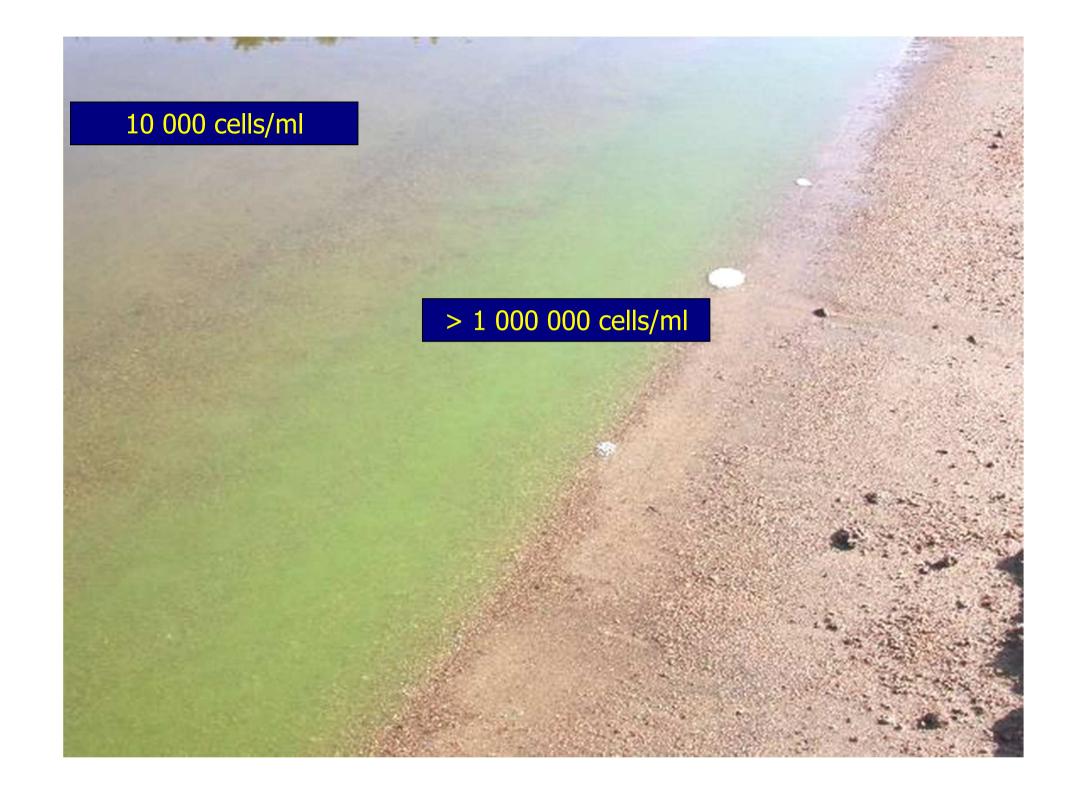
- Biomas development trends
- Biomass density
- Cyanotoxins content
- Forecast parameters
 - Weather
 - Nutrient flow (external, internal)
 - Inoculum in sediments
 - Ecophysiology of populations

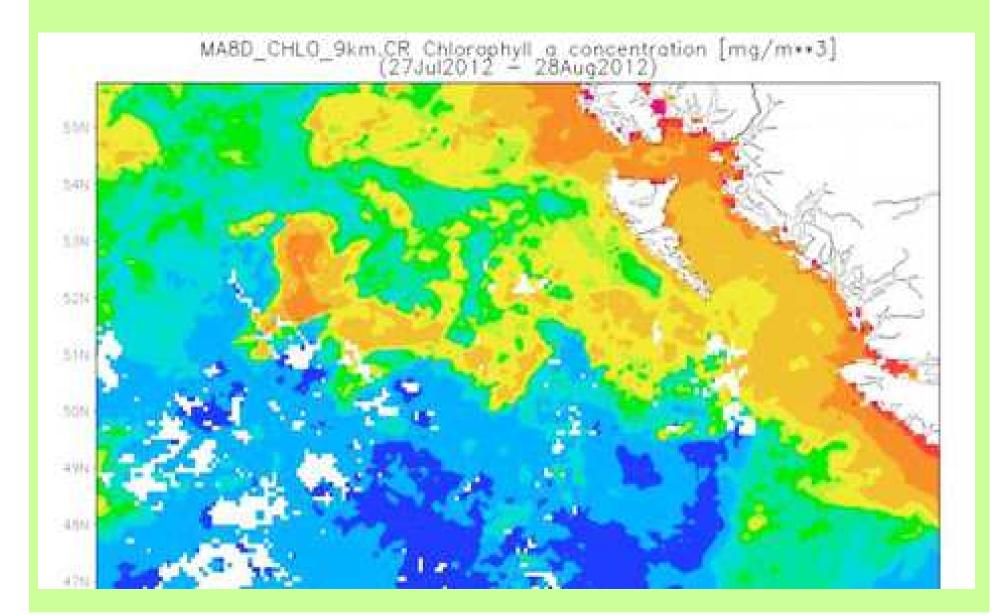
Are there any alternatives for cyanotoxins risks assessment?

- General idea:
- **CYANOBACTERIA** general parameters

for cyanobacterial biomass (raw water)

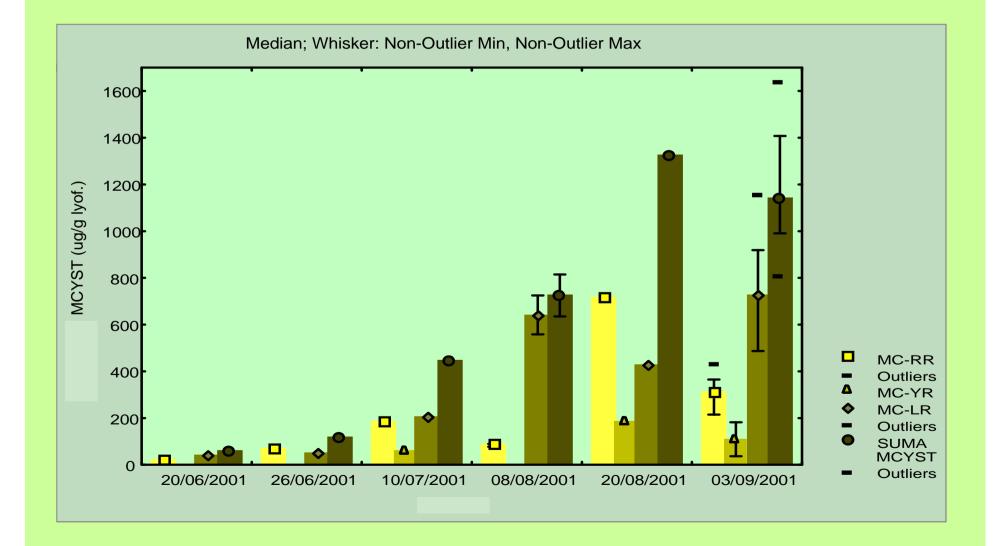

- <u>Biovolume</u>
- Pigments composition
- **CYANOTOXINS** (treated water)
 - Sensors for general toxicity
 - Sensors for selected toxins

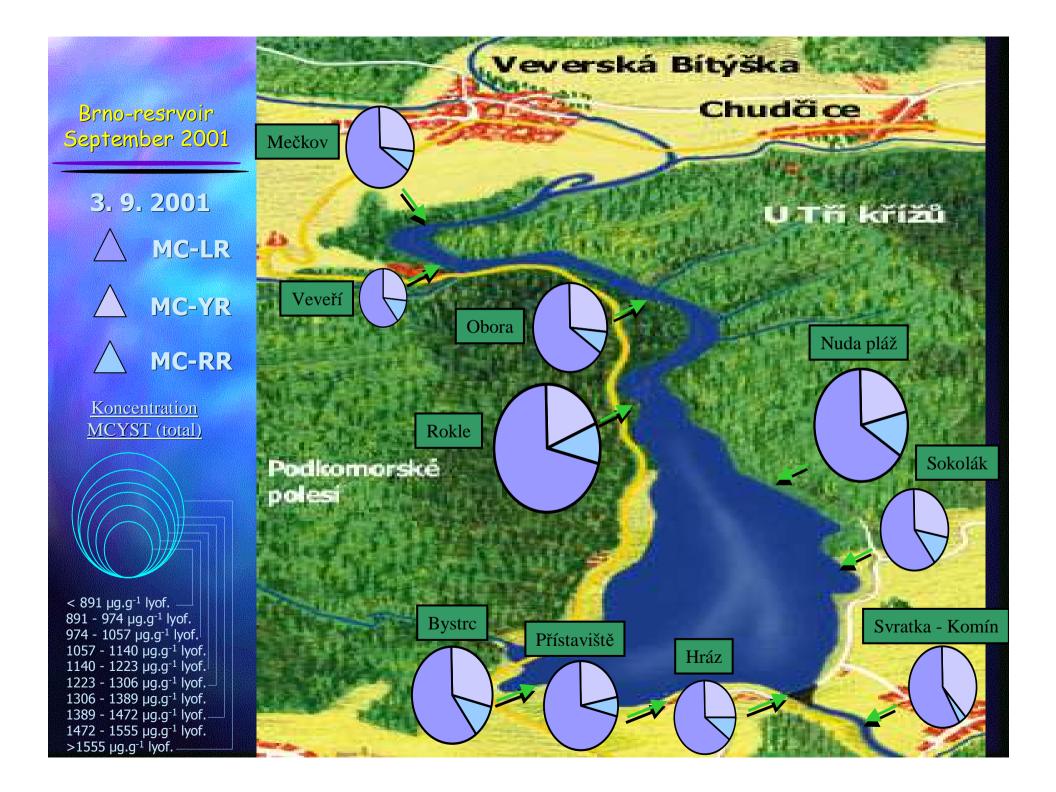

Cyanobacterial BIOMASS


- <u>Cyanobacterial biomass is the key monitored parameter in surface waters</u> HOWEVER:
 - intercalibration study for MICROCYSTIS quantification (cell counts) by 37 routine laboratories give the variability unacceptable by GLP
- Chlorophyll a concentrations by ISO method and FluoroProbe fits well, but
 ISO method did not discriminate cyanobacteria from other phycoplankton
- Microscopic determination and biovolume give a good results, but it is timeconsuming and need the experience
- COMBINATION OF METHODS IS NEEDED:
- Fluoro Probe and the dominant species determination seems to be a good compromisse for water management

Dermal contact with cyanobacteria in Brno reservoir represents relatively high health risk during a substantial part of the summer season.

Concentrations of cyanobacteria in Brno reservoir 2007(cells / mL) and comparison with WHO safety "Guidance levels". Results from three localities sampled biweekly.





Intake of microcystins during swimming **represents highly significant risks in the Brno reservoir both for children and adults.** Particularly, during August high HI values (up to 40 for children) were observed. HI > 1 for children were observed at 82% of localities during August 2001.

	water conc.	children (adults (70 kg, intake 50 ml.h ⁻¹)						
		regular swim. $(2,6 \text{ h.d}^{-1})$		weekend swim. (5 h.d^{-1})		regular (2,6	$h.d^{-1}$)	weekend (5 $h.d^{-1}$)	
date	of MCYST (µg.l ⁻¹)	intake MCYST (µg.kg ⁻¹ b.w./d)	HI	intake MCYST (μg.kg ⁻¹ b.w./d)	HI	intake MCYST (μg.kg ⁻¹ b.w./d)	HI	intake MCYST (µg.kg ⁻¹ b.w./d)	HI
26.6.	1,46	0,0122	0,30	0,0234	0,58	0,0027	0,07	0,0052	0,13
10.7.	5,86	0,0488	1,22	0,0938	2,35	0,0109	0,27	0,0209	0,52
7.8.	48,19	0,4010	10,02	0,7711	19,28	0,0895	2,24	0,1721	4,30
20.8.	116,18	0,9666	24,17	1,8589	46,47	0,2158	5,39	0,4149	10,37
3.9.	99,76	0,8300	20,75	1,5961	39,90	0,1853	4,63	0,3563	8,91

Fig. 1: Variations of three dominating microcystin variants in the cyanobacterial water blooms collected from Brno reservoir during the 2001 season. Median values (+/- maximum/minimum).

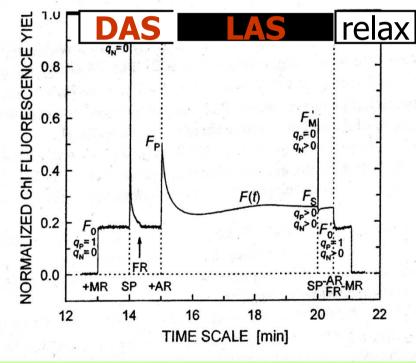
Unpleasant smell for humans and recreation Detectable changes in biodiversity of wilde life!!!

Trends in the risk evaluation

- Toxicity identification require special expertise and it is expensive
- All cyanobacteria produce toxins
- The most practical way is to quantify cyanobacterial biomass (pigments or cells by microscope, or special device like Fluoro Probe or CCD kinetic fluorescence immaging

Methodological approachesprediction

- Fluorescence microscopy and probes
- Laboratory cultivation
- CCD camera with FLIA was proved as powerful tool for the study of annual cycle of colony formation and ecophysiology of *Microcystis*
- meticulous care and long time under microscope was spend to build up base for
 - next comparative study of seasons
 - other localities
 - European countries
 - other species


Principle

- Light-induced PSII fluorescence kinetic
- Shows photosystem associated electron transport chain processes
- Fluorescence yield is connected to chlorophyll and redox state of chinons as well as to their binding sites disposition in photosystem
- => Detection of effects at base level of energy metabolism of autotrophic cell

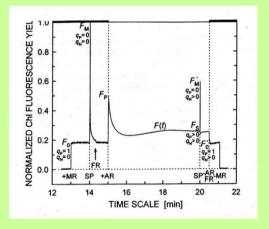
Chlorophyll fluorescence kinetic record

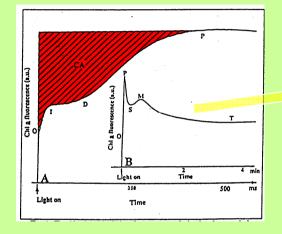
1. Dark Adapted State

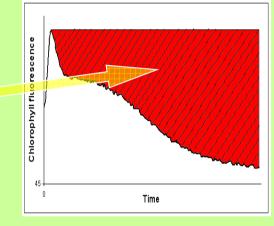
Light Adapted State

Several basic terms are measured: F₀ F_m F_p F_s F_{m'} F_{0'} Fast and slow kinetic could be used

Purpose of evaluation


Fluorescence parameters + fluorimeters


- specific mode of action
- studies of physiology or processes in photosynthesis


Complementary area + fluorescence imaging

- Screening bioassays
- Fluorescence imaging of heterogeneous and micro scale objects

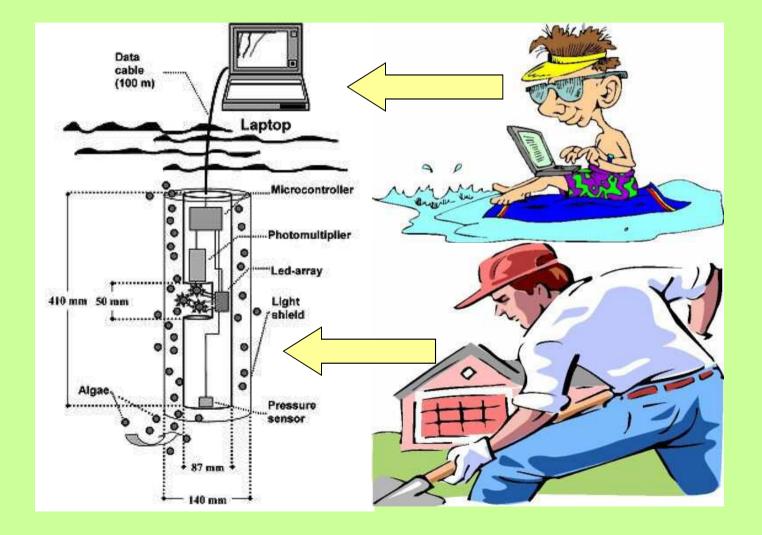
Evaluation of the processes

- 1] by the terms and fluorescence parameters of the slow kinetics
- 2] by calculating definite integral residual (complementary area) from fast and slow kinetic records of fluorescence

Benefits of evaluation by slow complementary area

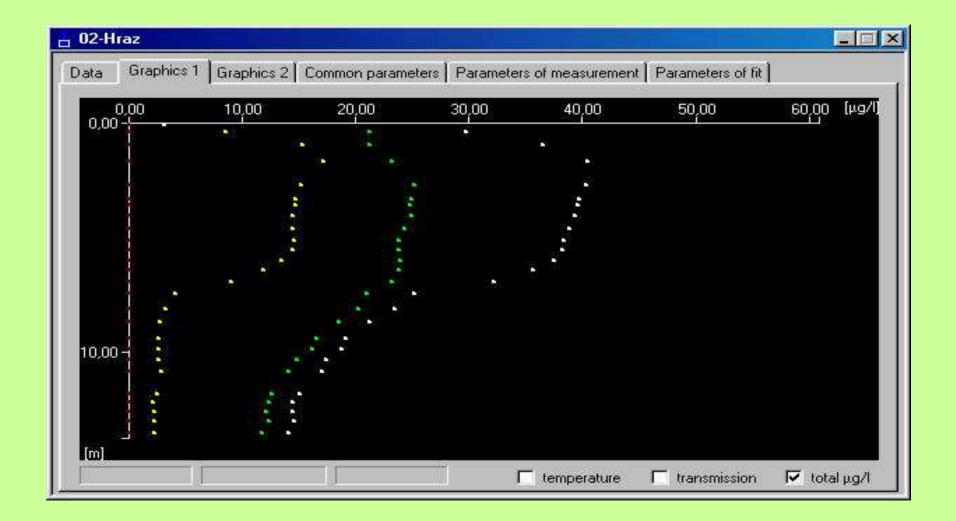
- Integrates several modes of action (ETS, proton pump, processes on membranes, ATP synthesis, Calvin cycle)
- Simple setup, simple interpretation
- Increase sensitivity for CCD fluorescence imaging systems
- Give the chance to observe heterogeneous object with low chlorophyll content
- Shows small variability in replicates

 Our instrumentation is based on fluorescence imaging systems (PSI, Brno, Czech Republic) with CCD camera detection


Photosynthetic pigments

group	pigments	Excit. (nm)	Emis. (nm)
Chlorophyta	Chlorophyll-b	480	685
Chromophyta Dinophyta	Chlorophyll-c Karotenoidy	460 525	685
Cyanobacteria	phycocyanin	610	650-685
Cryptophyta	phycoerythrin Chlorophyll-c	550 460	685

Fluoro Probe



FluoroProbe

	raphics 1	\$. 	se com		- (A)	^p arameter:		10	Parameters of fit	
time	- 2620 (26 <u>6</u>	temp.		algae (µ				transm.	int: temp.	
	[m]	[°C]	Green.	Bluegr.	Diatom.	Crypto.	[μg/l]	[%]		
06:55:59	0,03	20,9	0,00	0,20	0,00	0,00	0,20	56,05	24,2 22,6	
06:56:02	0,09	21,1	1,21	1,63	0,00	0,00	2,83	54,86	24,3 22,6	
06:56:04	0,23	21,3	5,92	8,89	0,00	1,17	15,97	65,55	24,3 22,6	
06:56:06	0,27	21,4	5,36	7,81	0,00	1,67	14,84	65,78	24,3 22,7	
06:56:09	0,39	21,4	5,65	7,52	0,00	1,58	14,74	66,08	24,3-22,7	
06:56:11	0,50	21,4	5,96	7,45	0,00	1,69	15,11	65,78	24,3 22,7	
06:56:14	0,67	21,4	5,66	8,31	0,00	1,68	15,65	66,07	24,3 22,7	
06:56:16	0,81	21,4	5,50	7,78	0,00	1,91	15,19	66,00	24,3 22,7	
06:56:18	1,02	21,4	5,63	7,70	0,00	1,98	15,31	65,82	24,3 22,7	
06:56:21	1,21	21,4	5,78	7,55	0,00	1,66	14,99	66,22	24,3 22,7	
06:56:23	1,58	21,4	5,88	6,32	0,00	1,69	13,88	66,28	24,3 22,8	
06:56:25	2,08	21,4	6,23	5,56	0,00	1,17	12,97	66,50	24,3 22,8	
	20	20	256		22			200		
							resul	ts: 🛛 🗍	(raw data)	-
First		Minus 1:	त्र 🗆	Prev		Vext	Plus	12	Last	lscreen

FluoroProbe - graph

Cyanotoxins and cyanobacterial blooms managament represents a great potential for the remote sensing application!!!!!

THANK YOU

Expected results

- Joint effort for validation and calibration of data measured by in-lake and aircraft spectra
- Evaluation of RS tools potential for risks assessment of cyanobacterial blooms (dynamic of biomass movement)
- Cross discussion RS tools potential for water quality assessment (soil erosion, nutrients pollution, use of new devices, spectra combination etc.).