Soil Spectroscopy: Principle and Applications

Prof. Eyal Ben Dor Department of Geography and Human Environment

Brno Czech Republic, June 25-26

SPeR – A (Chemometrics)

Basic Theory

Lesson 5

Soil Spectroscopy Course , Brno Czech Republic June 26-27,2013

Some information and a suggestion

NIRA – Near Infrared Analysis – First paper by Ben Gerah and Norris 1967 (NIR- 1- 2.5um)

Also can be found as Sper-ANear Infrared Spectroscopy

Non of these terms, as well as the vis-NIR reflects what we are realy doing: chmometrics based on (reflectance) spectroscopy

As we <u>measure</u> Reflectance and do <u>Spectral Analysis</u> the correct term should be :

SpeR - A (Spectral Reflectance - Analysis). It can be done in the VNIR-SWIR, in the VNIR or in the SWIR

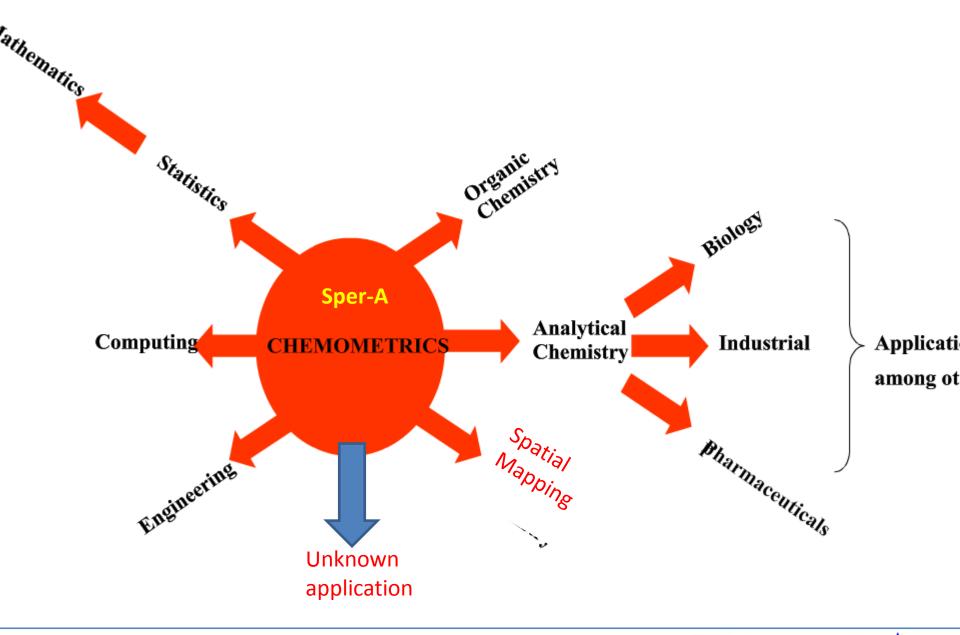
It is also a **spare** method for the wet chemistry

Soil Spectroscopy Course , Brno Czech Republic June 26-27,2013

Chemomatrics

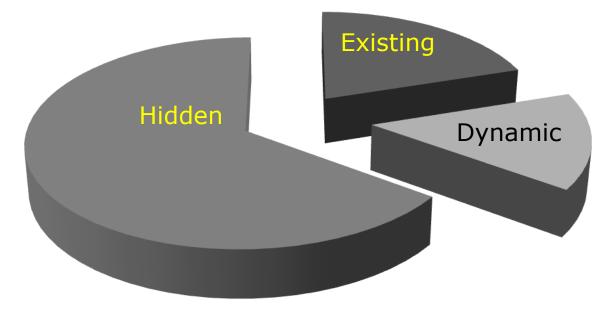
Chemometrics is the science of extracting information from chemical systems by data-mining means.

It is a highly interfacial discipline, using methods frequently employed in core data-analytic disciplines such as <u>multivariate statistics</u>, <u>applied mathematics</u>, and <u>computer science</u>, in order to address problems in <u>chemistry</u>, <u>Spectroscopy</u>, <u>biochemistry</u>, <u>medicine</u>, <u>biology</u> and <u>chemical engineering</u>.


Spectral – Chemomatrics Sper-A

Using spectral data to predict chemical AND physical information

Spectral- data mining (mathematics and statistics)



*

Many applications are still NOT used in Sper-A

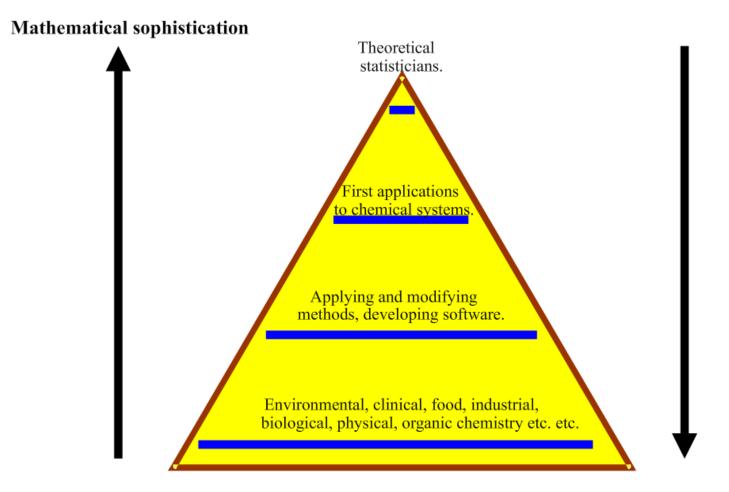
ASD 20 anniversary workshop, Boulder US, October 2009

Soil Spectroscopy Course , Brno Czech Republic June 26-27,2013

THE ULTIMATE DREAM

A lower level where no knowledge of chemometrics is required – good software.

•E.g. technician in warehouse looking at quality of drug


•Nurse in hospital looking at diagnosis

•Operator in manufacturing plant looking at whether product is OK.

HIERARCHY OF USERS

Applications

Tools for Sper-A

1. Methods. (Ways to analyze the data)

2. Software. (Means to analyze the data)

3. Instrumental techniques. (Means to collect the data)

4. Applications. (Utilization the analyzed data)

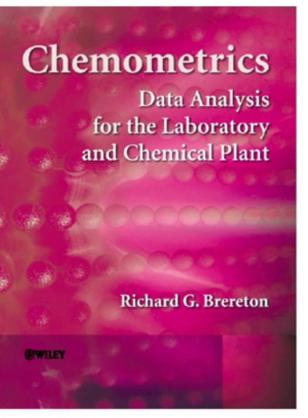
METHODS

•Experimental design

Pattern recognition

Calibration

THE REMOTE SENSING



Soil Spectroscopy Course, Brno Czech Republic June 26-27,2013

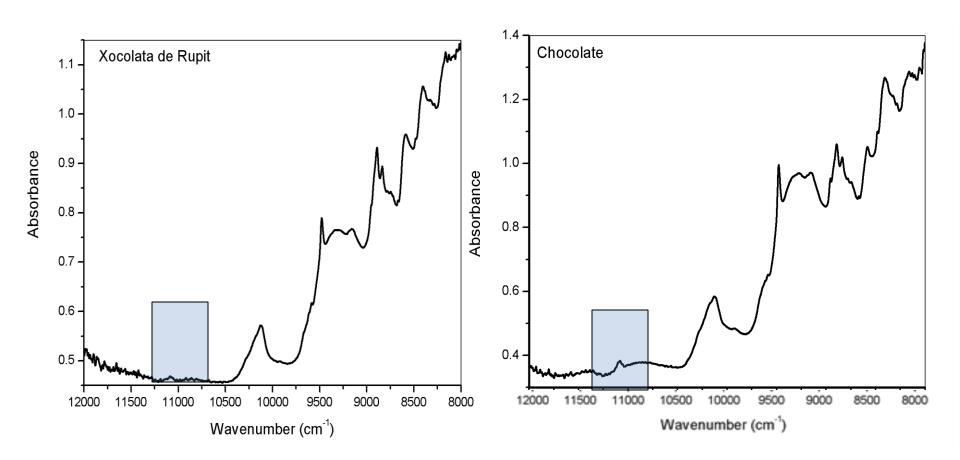
R.G.Brereton, Chemometrics : Data Analysis for the Laboratory and Chemical Plant, Wiley, Chichester, 2003 and 2004

www.spectroscopynow.com Website

Chemometrics Channel

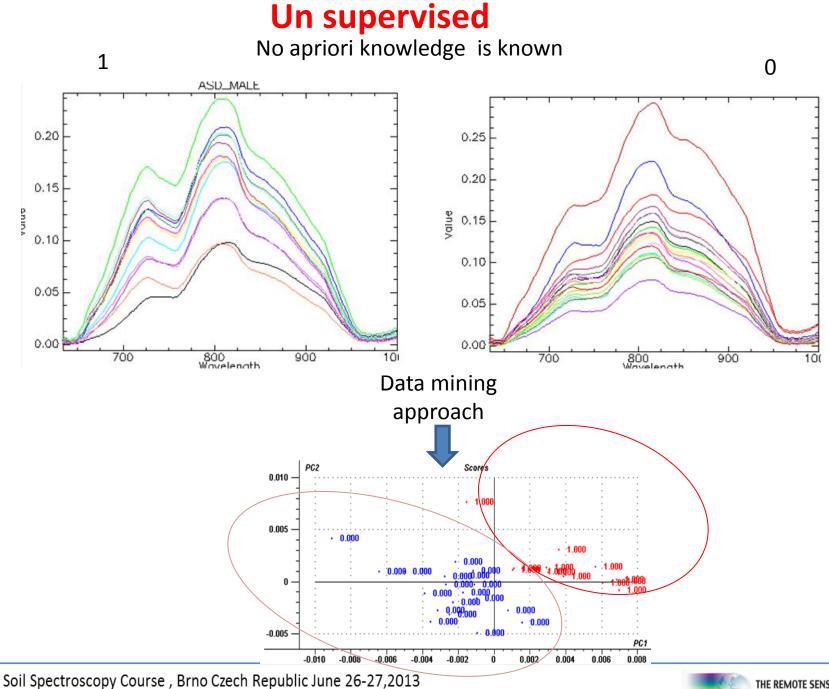
http://www.powershow.com/view/11d5b9-MTYzN/INTRODUCTION_TO_CHEMOMETRICS_powerpoint_ppt_presentation

There are Two Basic Ways


Supervised: Known features with significant changes

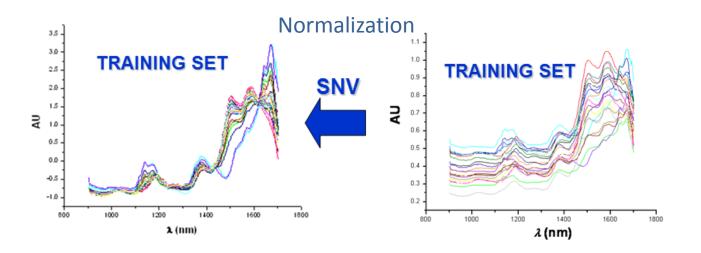
 Unsupervised: No spectral features are known for the application, no spectral features are seen by naked eyes

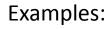
For the unsupervised – sophisticated "data mining" too is needed (chemometrics approach)



Supervised

Difference: Some times visible, some time s not




Methods for the Un supervised (Examples)

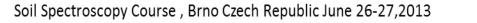
- Multivariate Regression (MLR)
- PCA
- PCR
- PLSR
- Neural Net Work

Pre processing stage: any method that orthogonally applies to all variables data set

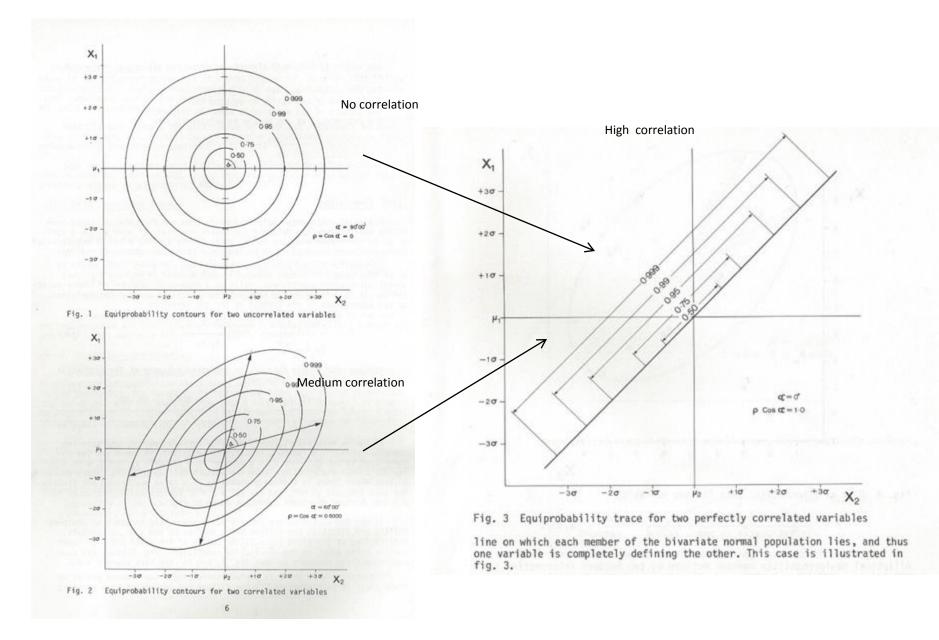
- Smoothing
- Derivation
- Normalization
- $A = \log (1/R)$
- Others

Linear Regression

which they covary. The most frequently used measure is Pearson's product moment correlation coefficient, which is a parametric measure of linear association. It is defined as the ratio of the covariance between two variables to the square root of the product of the two variances.

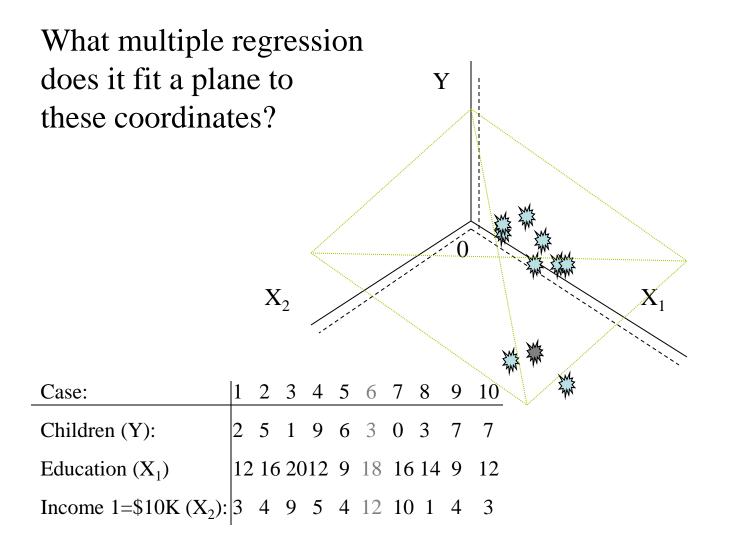

$$\rho = \frac{Cov(X_1, X_2)}{(\sigma_1^2, \sigma_2^2)^{\frac{1}{2}}} = \frac{Cov(X_1, X_2)}{\sigma_1 \cdot \sigma_2}$$
(1)

Working with sample data, r, an unbiassed estimate of the population correlation coefficient ρ , becomes (2)


 $r = \frac{Cov(X_1, X_2)}{s_1 \cdot s_2} = \frac{N \Sigma X_1 X_2 - \Sigma X_1 \cdot \Sigma X_2}{((N \Sigma X_1^2 - (\Sigma X_1)^2) \cdot (N \Sigma X_2^2 - (\Sigma X_2)^2))^{\frac{1}{2}}}$

It varies from +1.0 (perfect positive correlation) through zero (no correlation) to -1.0 (perfect negative correlation). If there are two uncorrelated variables, each with a mean of zero and unit variance, with a bivariate normal distribution, then the equiprobability contours (lines enclosing an area where there is a given probability of a value occurring) are circular. The axes interest at 90° , and cos 90° = r = 0. Equiprobability contours for p = 0.5, 0.75, 0.95, 0.99, 0.999 are shown in fig. 1.

 $r = \cos(\alpha)$



Stepwise multiple regression

- Stepwise regression is designed to find the most parsimonious set of predictors that are most effective in predicting the dependent variable.
- Variables are added to the regression equation one at a time, using the statistical criterion of maximizing the R² of the included variables.
- When none of the possible addition can make a statistically significant improvement in R², the analysis stops.

Soil Spectroscopy Course, Brno Czech Republic June 26-27,2013

• Mathematically, that plane is:

$$Y^{A} = a + b_1 X_1 + b_2 X_2$$

a = y-intercept, where X's equal zero

b=coefficient or slope for each variable

For our problem, the equation is: $Y^{=} 11.8 - .36X_{1} - .40X_{2}$ Expected # of Children = 11.8 - .36*Educ - .40*Income

Model Summary Model R R Square R S 1 .757 ^a .573 a. Predictors: (Constant), Income						Std. Error the Estim 2.337	ate			57% of the variation in number of children is explained by education and income!				
					Model			m of Jares	df	Mean Square	F	Sig.		
\wedge				1 Regression			1.518	2	80.759	14.776	.000 ^a			
				Residual		12	0.242	22	5.466					
$Y = 11.836X_140X_2$					Total		28	1.760	24					
					b. De	edictors: (Co ependent Var			e, Educatior	1				
	Unstandardized Coefficients		Standardized Coefficients											
Mode	Model		∖В	Std. Error	E	Beta			Sig.					
1	(Const	tant)	11.770	1.734			6.	787	.000					
	Educa	tion	* 364	.173		412	-2.7	105	.047					
	Incom	e	403	.194		408	-2.0	084	.049					
a.	Dependen	t Varia	ble: Childr	en						·				

Soil Spectroscopy Course , Brno Czech Republic June 26-27,2013

											<u> </u>		
			Mode										
			justed Square .534	quare the Estimate $\sum (V - V)^2$							Y) ²		
a. Predictors: (Constant), Income ANOVA®													
$^{\wedge}$ Y = 11.836X ₁ 40X ₂				ModelSquare1Regression161.4Residual120.4				me, Educa	2 22 24 atior	Mean Square 80.759 5.466	F 14.776	Sig. .000 ^a	
				Coeffici	^{b.} Dependent Variab Coefficients ⁸				161.518 ÷ 261.76 =				
	Unstand Coeffic				dardized ficients								
Model		B Std. Error Beta		Beta		t	Sig.						
1	(Constant)	7	770	1.734				6.787	.00	00			
	Education		364	.173		412	-	2.105	.04	17			
Income403 [•] .194				408	-	2.084	.04	19					

a. Dependent Variable: Children

Soil Spectroscopy Course , Brno Czech Republic June 26-27,2013

The number of Independent Variable (spectral information) must be equal or lower than the samples' number (10% is recommended).

Example: A spectrometer has 1000 wavelengths (independent variables) To run MLR for any attribute the number of soil samples has to be 100,000 ! As this is not realistic- a method to compress the wavelengths into meaningful number is needed

Solution:

Finding from the 1000 wavelength the <u>few that are highly correlated</u> to the property in question and only then, run MLR.

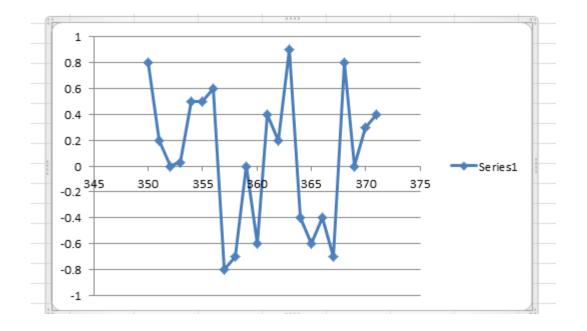
If we have 40 samples we must select 4> wavelengths

Soil Spectroscopy Course, Brno Czech Republic June 26-27,2013

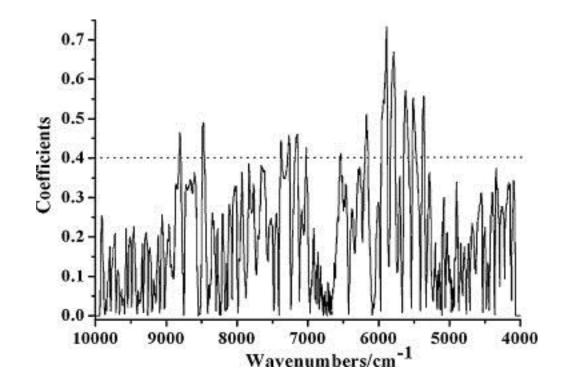
How we do that?

Correlogram: Spectrum of λ against R

X vs. Y(λ , 1,2,3,4,5.6,7) \rightarrow R


	Attribute	s (x)		S	spectra	al (y)	Sar	nple	R		
A	В	С	D	E	F	G	н	I	J	K	
Wavelength	Clay	1	2	3	4	2 5	6	7		R	
35	0 20	0.036597	0.075812	0.042233	0.067764	0.044539	0.084978	0.040354		0.8	
35	1 32	0.037566	0.07866	0.041297	0.068742	0.042737	0.077825	0.032997		0.2	
35	2 45	0.039534	0.075939	0.040123	0.065941	0.040151	0.075078	0.029863		0	
35	3 32	0.041243	0.072183	0.040731	0.063077	0.038358	0.076869	0.032891		0.03	
35	4 67	0.040161	0.073291	0.042836	0.064507	0.036743	0.077427	0.036693		0.5	
35	5 55	0.041081	0.072857	0.046125	0.066654	0.041941	0.080258	0.037634		0.5	
35	6 88	0.043806	0.07418	0.047051	0.068508	0.045377	0.082281	0.038051		0.6	
35	7 23	0.046124	0.078963	0.043976	0.069362	0.041095	0.081242	0.039751		-0.8	
) 35	8 44	0.04065	0.07851	0.043402	0.068178	0.040155	0.080866	0.039031		-0.7	
L 35	9 54	0.036009	0.074677	0.041282	0.064074	0.03769	0.079304	0.036201		0	
2 36	0 67	0.037128	0.07154	0.037754	0.059634	0.034072	0.077133	0.033179		-0.6	
3 36	1 56	0.044817	0.07871	0.04182	0.065099	0.041206	0.080463	0.035983		0.4	
1 36	2 44	0.039041	0.076669	0.039498	0.063749	0.039887	0.077967	0.029918		0.2	
5 36	3 12	0.02679	0.069045	0.033855	0.05777	0.032453	0.072566	0.021016		0.9	
5 36	4 4	0.033287	0.074241	0.038831	0.061219	0.034768	0.076412	0.029136		-0.4	
7 36	5 55	0.038166	0.077927	0.041239	0.064212	0.035108	0.080229	0.033523		-0.6	
3 30	6 22	0.040581	0.07958	0.042114	0.066724	0.036304	0.08221	0.034597		-0.4	
3	7 23	0.043701	0.081406	0.044926	0.070078	0.042514	0.082508	0.037109		-0.7	
) 30	8 43	0.04293	0.079317	0.042208	0.067472	0.039667	0.081978	0.034157		0.8	
L 36	9 52	0.038207	0.073806	0.038647	0.061776	0.034788	0.07901	0.029572		0	
2 37	0 35	0.03209	0.06813	0.038058	0.057491	0.033977	0.07458	0.027347		0.3	
3 37	1 46	0.03335	0.072875	0.03873	0.061967	0.035109	0.078316	0.029684		0.4	

Soil Spectroscopy Course , Brno Czech Republic June 26-27,2013



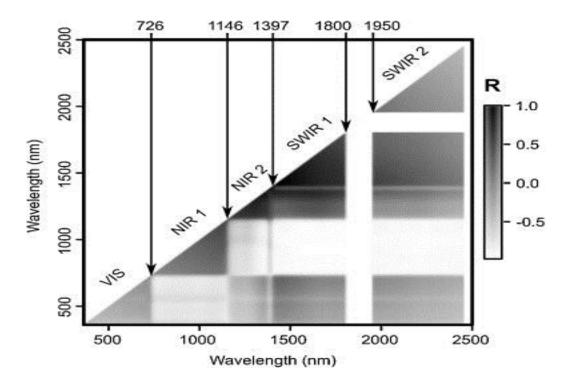
Correlogram

Examples from the Literature (high spectral resolution)

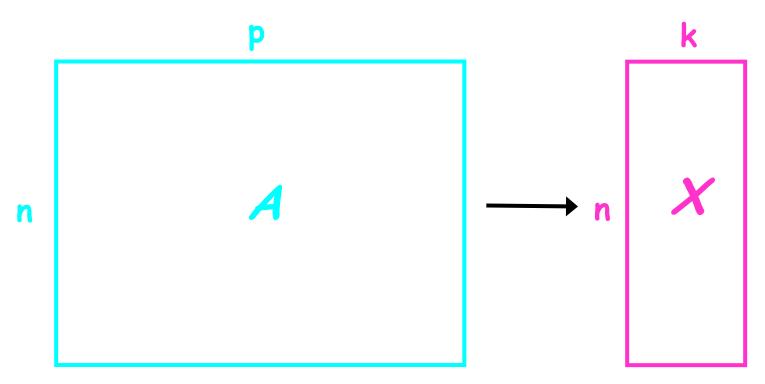
Once the wavelengths are selected

Run

- MLR
- PCA
- PLSR



Principal Component Analysis (PCA)


Soil Spectroscopy Course, Brno Czech Republic June 26-27,2013

Data Reduction

 summarization of data with many (p) variables by a smaller set of (k) derived (synthetic, composite) variables.

Data Reduction

- "Residual" variation is information in A that is not retained in X
- balancing act between
 - clarity of representation, ease of understanding
 - oversimplification: loss of important or relevant information.

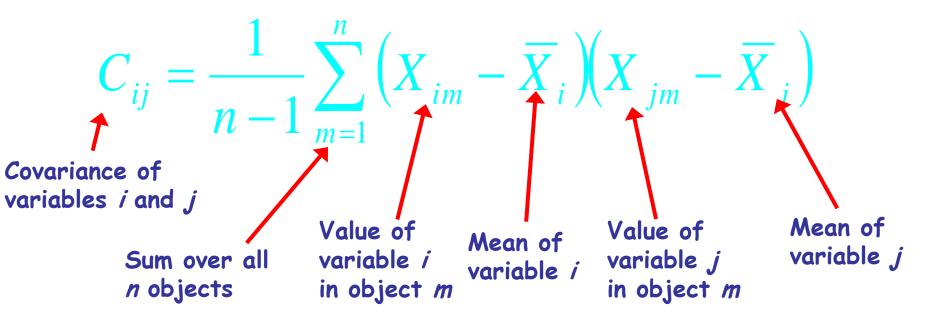
Principal Component Analysis (PCA)

- probably the most widely-used and wellknown of the "standard" multivariate methods
- invented by Pearson (1901) and Hotelling (1933)
- first applied in ecology by Goodall (1954) under the name "factor analysis" ("principal factor analysis" is a synonym of PCA).

Principal Component Analysis (PCA)

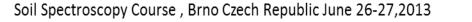
- takes a data matrix of *n* objects by *p* variables, which may be correlated, and summarizes it by uncorrelated axes (principal components or principal axes) that are linear combinations of the original *p* variables
- the first k components display as much as possible of the variation among objects.

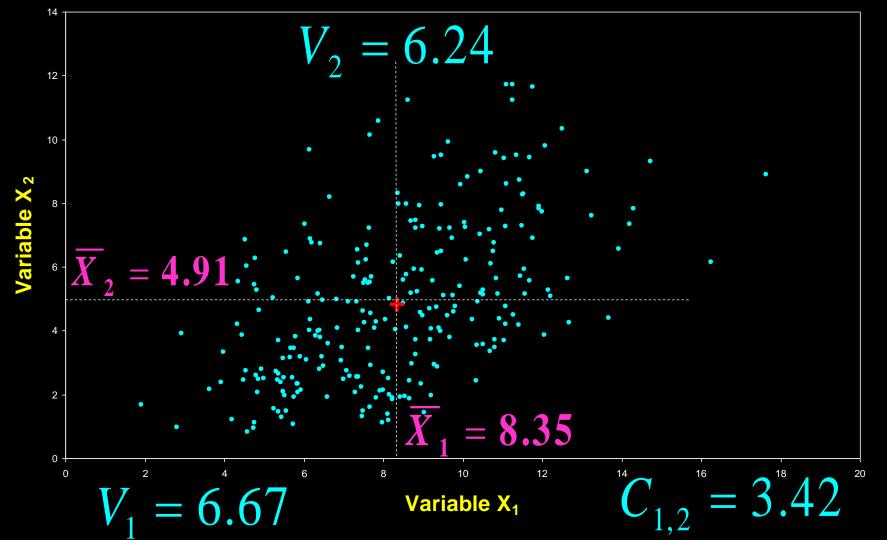
Geometric Rationale of PCA


- objects are represented as a cloud of n points in a multidimensional space with an axis for each of the p variables
- the centroid of the points is defined by the mean of each variable
- the variance of each variable is the average squared deviation of its *n* values around the mean of that variable.

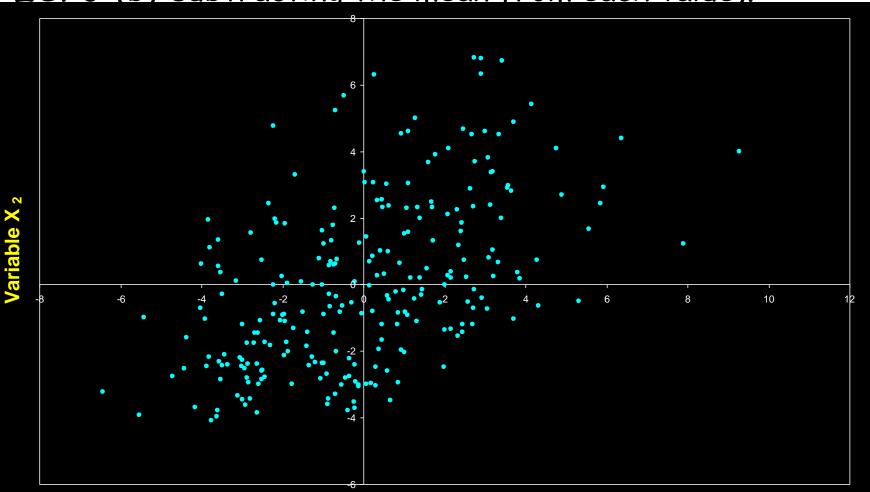
$$V_{i} = \frac{1}{n-1} \sum_{m=1}^{n} \left(X_{im} - \overline{X}_{i} \right)^{2}$$

Geometric Rationale of PCA

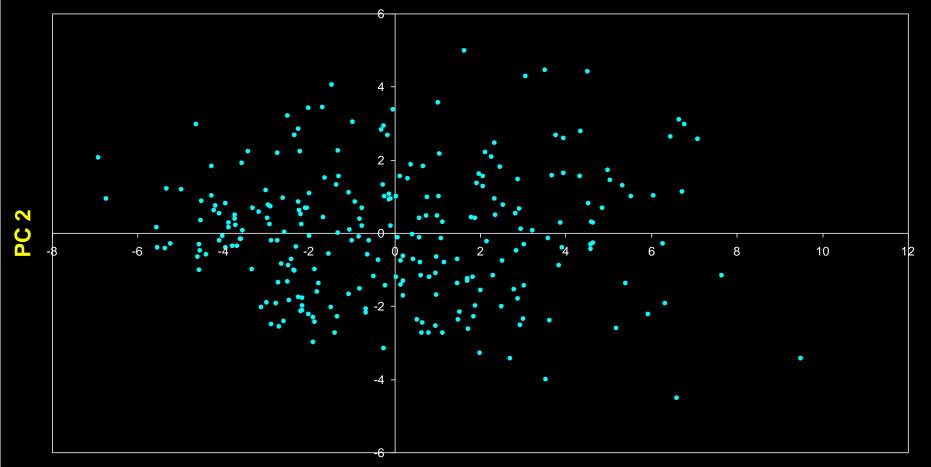

 degree to which the variables are linearly correlated is represented by their covariances.

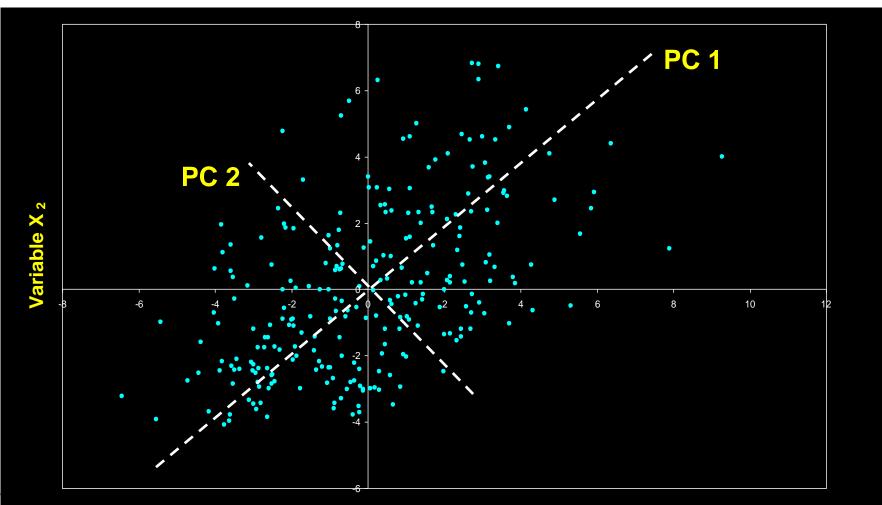

Geometric Rationale of PCA

- objective of PCA is to rigidly rotate the axes of this *p*-dimensional space to new positions (principal axes) that have the following properties:
 - ordered such that principal axis 1 has the highest variance, axis 2 has the next highest variance,, and axis p has the lowest variance
 - covariance among each pair of the principal axes is zero (the principal axes are uncorrelated).


2D Example of PCA variables X_1 and X_2 have positive covariance & each has a similar variance.

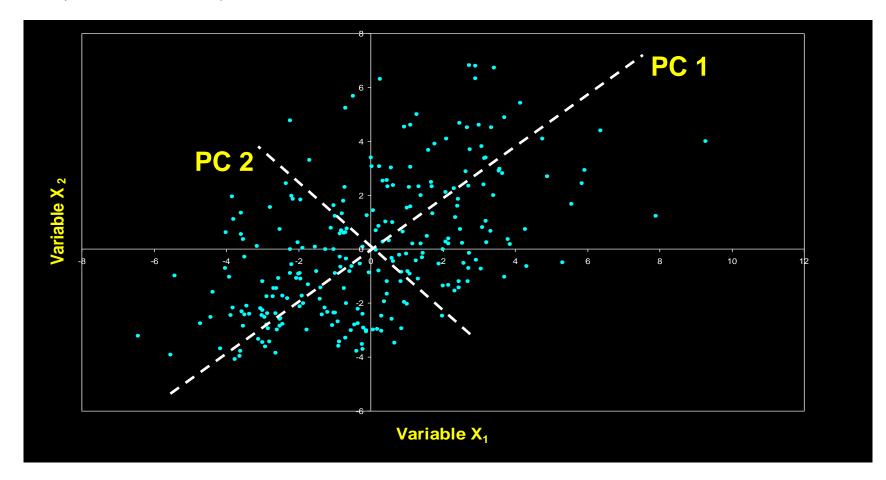
Soil Spectroscopy Course, Brno Czech Republic June 26-27,2013


 Configuration is Centered
 each variable is adjusted to a mean of zero (by subtracting the mean from each value).

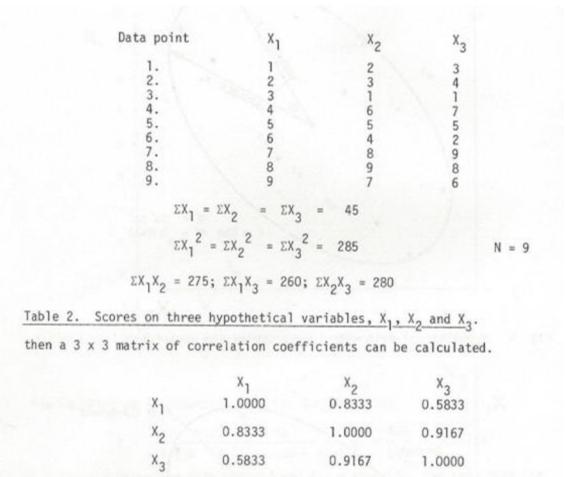

Variable X₁

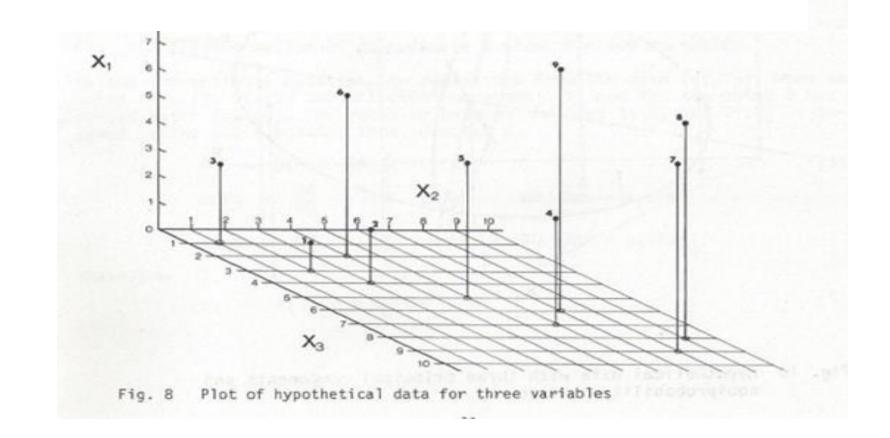
Principal Components are Computed

- PC 1 has the highest possible variance (9.88)
- PC 2 has a variance of 3.03
- PC 1 and PC 2 have zero covariance.

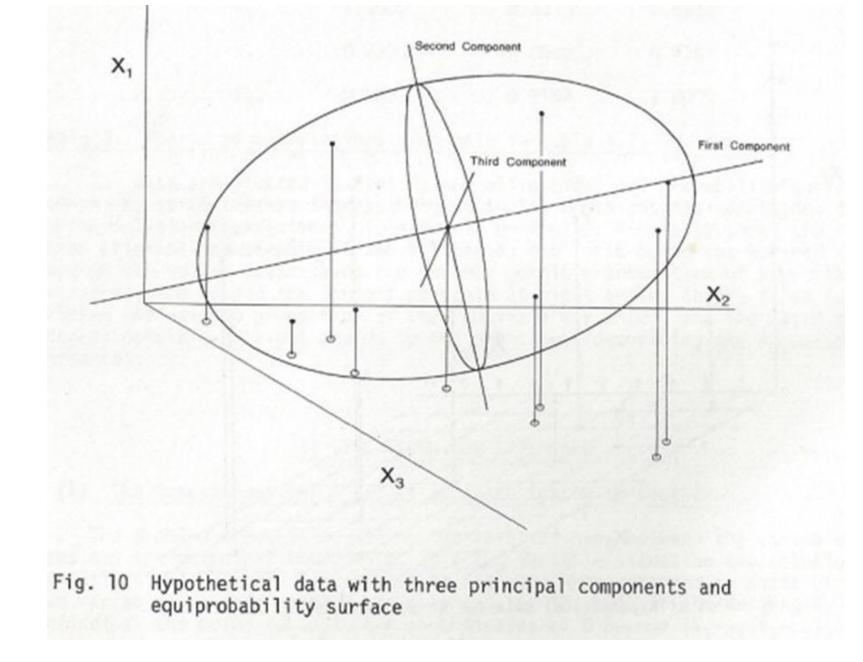


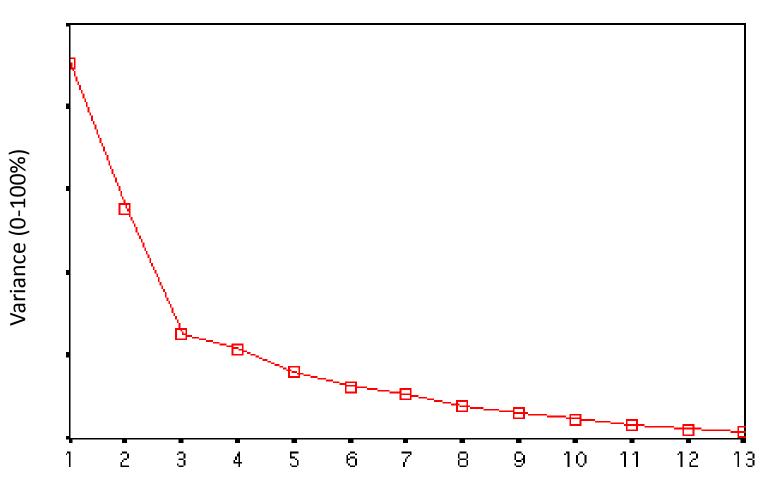
- each principal axis is a linear combination of the original two variables
- $PC_j = a_{i1}Y_1 + a_{i2}Y_2 + ... a_{in}Y_n$ a_{ij} 's are the coefficients for factor i, multiplied by the measured value for variable j


Variable X₁

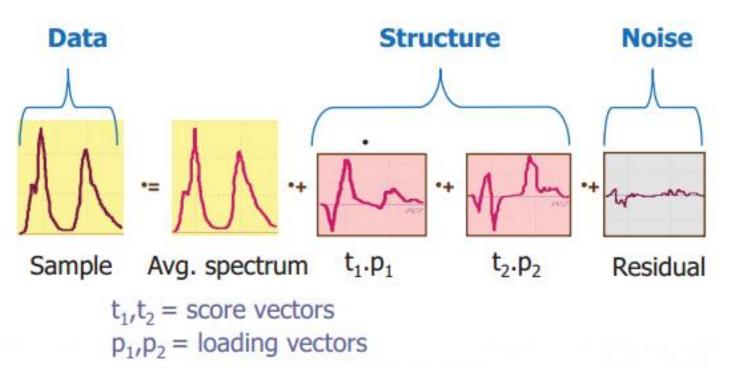

- PC axes are a rigid rotation of the original variables
- PC 1 is simultaneously the direction of maximum variance and a least-squares "line of best fit" (squared distances of points away from PC 1 are minimized).

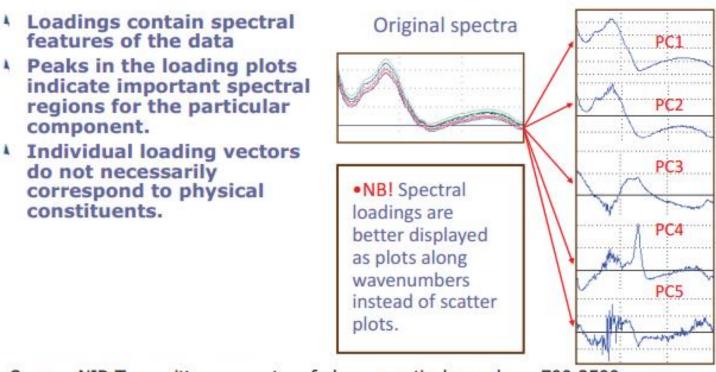
Example for PCA





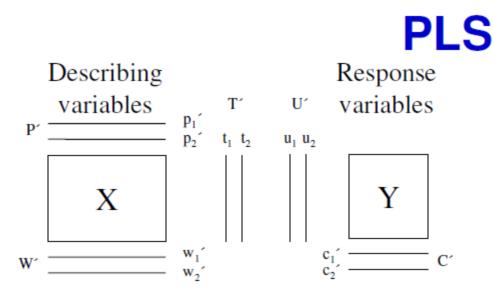
Eigenvalue


Component Number


Scores and Loadings

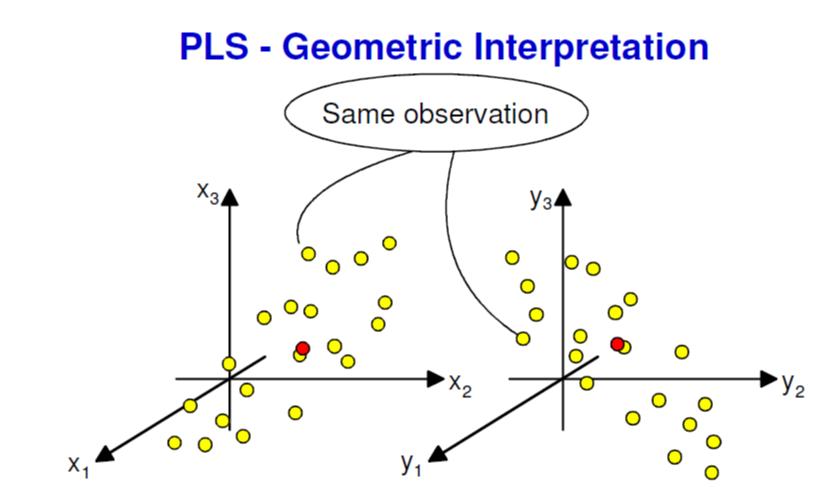
Each sample is represented as a linear combination of the principal components

Source: NIR Transmittance spectra of pharmaceutical samples - 700-2500 nm

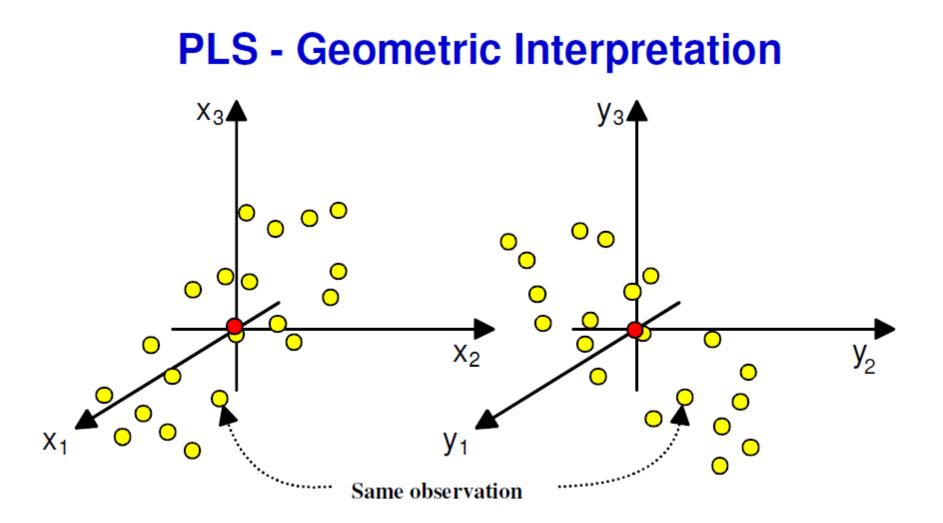


Spectral loadings

(i)	"CORN"	1.00														
(ii)	"ROOT"	0.70	1.00													
(iii)	"PASTURE"	-0.71	-0.41	1.00												
(iv)	"HAY"	-0.08	-0.15	0.11	1.00											
(v)	"OTHER"	0.10	0.04	-0.37	-0.46	1.00										
(vi)	"WHEAT"	0.27	0.05	-0.32	0.21	0.15	1.00									
(vii)	"OATS"	-0.80	-0.64	0.55	-0.02	0.09	-0.40	1.00								
(viii)	"MILCH"	0.00	0.06	0.12	0.45	-0.66	0.31	-0.29	1.00							
(ix)	"P-MILCH"	0.60	0.38	-0.54	-0.14	-0.02	0.28	-0.53	0.34	1.00						
(x)	"SHEEP"	0.43	0.25	-0.24	-0.00	-0.16	0.49	-0.41	0.47	0.42	1.00					
(xi)	"1-10 HO"	0.66	0.46	-0.38	0.03	-0.16	0.27	-0.73	0.17	0.37	0.21	1.00				
(xii)	"50-100"	-0.64	-0.67	0.40	-0.13	0.17	-0.09	0.80	-0.08	-0.29	-0.04	-0.78	1.00			4
(xiii)	"COMBINE"	0.42	0.36	-0.46	0.12	0.00	0.54	-0.77	0.34	0.25	0.41	0.51	-0.61	1.00		¢
(xiv)	"MILKMAC"	0.41	0.18	-0.51	0.28	-0.08	0.38	-0.58	0.01	0.09	0.00	0.49	-0.61	0.60	1.00	
(xv)	"MALES"	-0.15	0.07	0.20	0.41	-0.84	-0.12	-0.01	0.70	0.00	0.10	0.07	-0.07	0.01	0.02	1.00
		(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	(ix)	(x)	(xi)	(xii)	(xiii)	(xiv)	(xv)

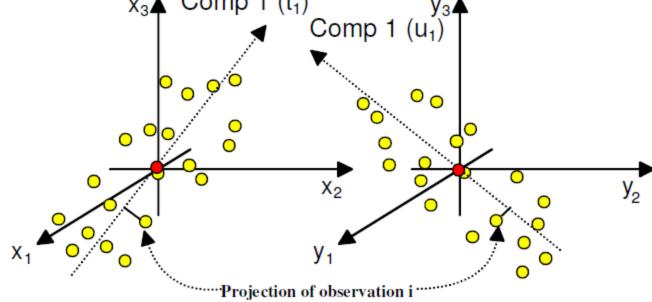

Table 7. Lower triangle of correlation matrix for 15 variables, first analysis.

- Can handle many noisy collinear variables (compare with MLR)
- Tolerate moderate amounts of missing data (X and Y)
- Multiple responses modelled at the same time
- The result can be graphically visualized i.e. score plots and



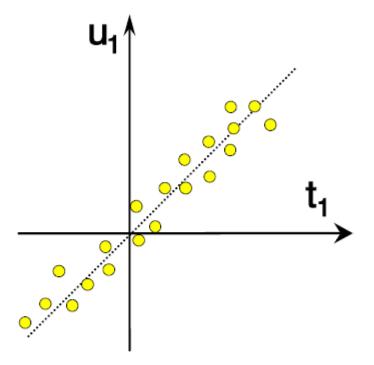
- Each observation is represented by one point in the X-space and one in the Y-space
- As in PCA, the initial step is to calculate and subtract the averages; this corresponds to moving the coordinate systems

Soil Spectroscopy Course , Brno Czech Republic June 26-27,2013



 The mean-centering procedure implies that the origin of each coordinate system is re-positioned

Soil Spectroscopy Course, Brno Czech Republic June 26-27,2013


PLS - Geometric Interpretation x₃ ← ^{Comp 1} (t₁) y₃ ←

- The first PLS-component is a line in the X-space and a line in the Y-space, calculated to
 a) approximate the point-swarms well in X and Y
 b) provide a good correlation between the projections (t₁ and u₁)
- Directions are $w_{\scriptscriptstyle 1}$ and $c_{\scriptscriptstyle 1}$ and co-ordinates along these vectors

PLS - Geometric Interpretation

 The projection coordinates, t₁ and u₁, in the two spaces, X and Y, are connected and correlated through the inner relation
 u_{i1} = t_{i1} + h_i (h_i is a residual)

Soil Spectroscopy Course, Brno Czech Republic June 26-27,2013

			variabl	es			١	Navele	ngths			
		H (CaCl2	Ntot %	Cox %	350	351	352	353	354	355	356	<mark>3</mark> 57 ▲
		1	2	3	4	5	6	7	8	9	10	11
1-H2	1	3.4200	0.1860	3.5500	7.5812e-02	7.8660e-02	7.5939e-02	7.2183e-02	7.3291e-02	7.2857e-02	7.4180e-02	7.8963
2-H2	2	3.1600	0.3050	5.9200	6.7764e-02	6.8742e-02	6.5941e-02	6.3077e-02	6.4507e-02	6.6654e-02	6.8508e-02	6.9362
3-H2	3	3.5200	0.2170	3.9000	8.4978e-02	7.7825e-02	7.5078e-02	7.6869e-02	7.7427e-02	8.0258e-02	8.2281e-02	8.1242
4-H2	4	3.4000	0.2420	4.2800	6.3061e-02	5.9753e-02	5.7598e-02	5.8526e-02	5.9966e-02	6.2146e-02	6.2425e-02	5.9424
5-H2	5	3.3300	0.2600	4.8200	5.5647e-02	5.7697e-02	5.8126e-02	5.8575e-02	6.1101e-02	6.0767e-02	5.9853e-02	6.0564
6-H2	6	3.4100	0.2390	3.9700	7.7118e-02	8.1708e-02	8.4066e-02	8.3470e-02	8.1504e-02	7.6186e-02	7.2653e-02	7.4251
7-H2	7	3.3000	0.2400	4.1300	9.0307e-02	8.8831e-02	9.2090e-02	9.6331e-02	9.4941e-02	9.1973e-02	8.7676e-02	8.2700 =
8-H2	8	3.2700	0.2640	4.8200	7.8177e-02	7.7864e-02	7.9271e-02	8.3268e-02	8.8739e-02	8.3659e-02	7.6078e-02	7.3768
9-H2	9	3.4400	0.1700	3.1600	9.0659e-02	9.2013e-02	9.1548e-02	9.1889e-02	9.6653e-02	9.0379e-02	8.2906e-02	8.3167
10-H2	10	3.5400	0.1960	2.7800	8.2668e-02	8.1480e-02	8.3849e-02	8.8166e-02	9.0274e-02	8.9105e-02	8.5262e-02	8.0365
11-H2	11	3.5500	0.1530	2.7400	0.1054	0.1069	0.1022	9.9786e-02	0.1090	0.1040	9.7862e-02	0.
12-H2	12	3.3900	0.1150	1.8900	9.5994e-02	9.4586e-02	9.0226e-02	8.9133e-02	9.7811e-02	9.6249e-02	9.2702e-02	9.5169
13-H2	13	3.2800	0.1260	2.0100	0.1139	0.1145	0.1098	0.1076	0.1174	0.1131	0.1079	0.
14-H2	14	3.5400	0.1090	1.7000	0.1359	0.1314	0.1301	0.1331	0.1389	0.1341	0.1300	0.
15-H2	15	3.0900	0.1380	2.3900	5.2701e-02	5.7808e-02	5.4761e-02	5.1519e-02	6.1359e-02	5.9657e-02	5.5406e-02	5.7463
16-H2	16	3.3700	9.2000e-02	1.3900	0.1191	0.1056	0.1070	0.1157	0.1148	0.1143	0.1125	0.
17-H2	17	3.3000	0.1460	2.3900	0.1227	0.1126	0.1134	0.1195	0.1192	0.1227	0.1240	0.
18-H2	18	3.3600	0.1350	2.1600	8.6688e-02	7.9889e-02	8.0846e-02	8.5568e-02	8.7059e-02	9.0212e-02	9.1081e-02	8.7271
19-H2	19	3.4700	0.1580	2.9700	0.1053	0.1028	0.1056	0.1091	0.1072	0.1088	0.1089	0.
20-H2	20	3.3100	0.1460	2.2800	0.1255	0.1135	0.1130	0.1192	0.1194	0.1200	0.1199	0.
21-H2	21	3.2000	0.1960	2.9300	9.4911e-02	9.7565e-02	9.9859e-02	9.9101e-02	9.5255e-02	9.2029e-02	9.2249e-02	9.6505
22-H2	22	3.4500	0.1270	2.0800	0.1057	0.1010	0.1008	0.1043	0.1072	0.1023	9.8925e-02	0.
23-H2	23	3.4200	0.1850	3.1600	8.3049e-02	8.1640e-02	8.0518e-02	8.0717e-02	8.3455e-02	8.0279e-02	7.7703e-02	8.1053
24-H2	24	3.4300	0.2120	3.2800	9.9271e-02	9.9942e-02	0.1005	0.1007	9.8387e-02	9.4745e-02	9.3870e-02	9.7490
25-H2	25	3.5100	0.1480	2.0800	9.9715e-02	0.1004	0.1008	0.1011	0.1009	9.3165e-02	8.8576e-02	9.4614

Taking into account ALL variables (and not one variable) and wavelengths

PLSR

e Unscram	nbler - [Ani	alisi dati sco	polamina]												
Edit Viev	w Plot Mod	lify Task Re	sults Windo	w Help										_ 8 ×	
3 🖬 🐰		5 🔊	? №?	+	X 🔊 🕇	ाल।		200		* <i>F</i>					
	SCO%	LID%	FEN%	MAN%	903	905.25	907.5	909.75	912	914.25	916.5	918.75	921	923.25 🔺	Dependent verleblee
	ť	2	3'	4'	5	6'	7	8	9'	10'	11'	12'	13'	14'	Dependent variables
1	100.0000	0.0000	0.0000	0.0000		-0.4791	-0.5889	-0.5959	-0.6136		-0.6313	-0.6384	-0.6396		2 • A concentration values
2	14.6538 44.9270	34.5397 0.0000	19.8859 55.0730	30.9205 0.0000		-0.9011 -0.7076	-0.9229	-0.9208	-0.9208		-0.9290	-0.9371 -0.8834	-0.9419 -0.8793	-0.9426 -0.8783	3 o 4 concentration values
4	44.9270	49.8008	50.1992	0.0000		-0.9369	-0.9669	-0.8343	-0.9841	-0.8701		-0.8834	-0.8793	-1.0456	
5	0.0000	45.0100	54.9900	0.0000		-0.8985	-0.9388	-0.9388	-0.9577			-1.0069	-1.0157	-1.0220	
6	0.0000	100.0000	0.0000	0.0000	-0.8979	-0.9311	-0.9387	-0.9296	-0.9356	-0.9447	-0.9669	-0.9859	-1.0012		Independent variables
7	0.0000	0.0000	100.0000	0.0000		-0.7903	-0.8932	-0.9214	-0.9312		-0.9495	-0.9495	-0.9544	-0.9532	-
8	35.0569 30.0020	0.0000 35.0190	34.9970 34.9790	29.9461 0.0000	-0.6692	-0.8318 -0.8619	-0.8959 -0.9154	-0.9004	-0.9038		-0.9129 -0.9688	-0.9135 -0.9733	-0.9146 -0.9755	-0.9174	256 absorbance values
10	0.0000	0.0000	0.0000	100.0000		-0.7814	-0.8209	-0.9254	-0.8168			-0.8213	-0.8213	-0.8250	
11	0.0000	0.0000	50.0399	49.9601	-0.6956	-0.8208	-0.8715	-0.8772	-0.8811		-0.8885	-0.8908	-0.8925	-0.8897	
12	0.0000	50.0400	0.0000	49.9600	-0.8831	-0.9131	-0.9215	-0.9183	-0.9183	-0.9229	-0.9294	-0.9333	-0.9391	-0.9450	
13	0.0000	0.0000	44.9550	55.0450		-0.8359	-0.8742	-0.8762	-0.8816			-0.8924	-0.8929	-0.8939	
14 15	50.1196	0.0000	49.8804	0.0000		-0.7865	-0.8823	-0.9058	-0.9380			-0.9605	-0.9566	-0.9556	Original variables
15	29.9581 30.0938	14.9391 34.9830	30.1778 0.0000	24.9251 34.9232	-0.7655 -0.8212	-0.8671	-0.9135 -0.9161	-0.9210	-0.9326			-0.9490 -0.9398	-0.9510 -0.9468	-0.9551 -0.9454	
17	44.9640	55.0360	0.0000	0.0000		-0.9793	-0.9915	-0.9842	-0.9854	-0.9964	-1.0171	-1.0269	-1.0367	-1.0367	
18	35.0120	30.0160	0.0000	34.9720	-0.8285	-0.8688	-0.8810	-0.8791	-0.8803	-0.8880	-0.8970	-0.9008	-0.9034	-0.9053	
19	49.9301	0.0000	0.0000	50.0699	-0.6593	-0.7635	-0.8022	-0.8064	-0.8095	-0.8111	-0.8163	-0.8174	-0.8216	-0.8289	
20	50.8717	49.1283	0.0000	0.0000		-1.0041	-1.0140	-1.0155	-1.0235			-1.0522	-1.0623	-1.0735	
21	0.0000	30.0000 40.1118	34.9600 39.9321	35.0400 19.9561		-0.8529 -0.9890	-0.8664 -0.9871	-0.8679 -0.9886	-0.8732 -0.9961	-0.8784		-0.8920	-0.8958	-0.9025 -1.0398 V	
22	0.0000	40.1110	39.9321	19.9001	-0.9902	-0.9690	-0.9071	-0.9000	-0.9901	-1.0008	-1.0009	-1.0175	-1.0201	-1.0390	Drively of Component
, press F1											Value: 100.	0000 Size:	53 x 360 F	R/W GU /	Principal Components
															(PC)
															$\begin{array}{cccc} X & \longrightarrow & u_m \\ & & \downarrow \\ & Y & \rightleftharpoons & t_m \end{array}$

THE REMOTE SENSING LABORATORIES *

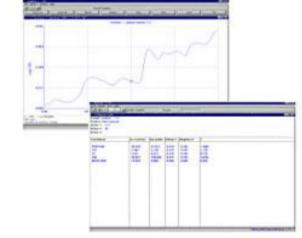
🛤 🛛 Hochschule Reutlingen

Building a Calibration Model

Calibration Samples

- How many depends on the samples and the model; more is typically better; can be ~1000-1000
- Calibration samples should reflect the composition and variance expected in test samples

Chemical Characterization


 Controls precision and accuracy of calibration model

Multivariate Analysis Tools

 Translates spectroscopic data into compositional data

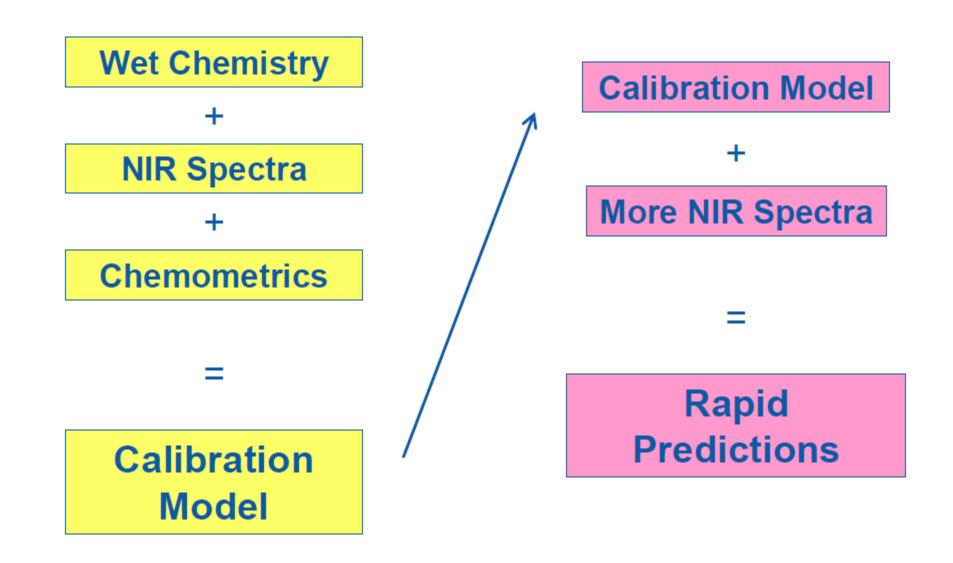
QA/QC

- Calibration checks (well characterized "blind" samples or standard reference materials)
- Outlier flag(s)
- Measure(s) of uncertainty

Model types

• Fundamental models (hard models, "global models")

$$E = mc^2$$
 $y = y_0 e^{-kt}$ $U = IR$


Empirical models

 (soft models, "local models")
 Taylor expansions (polynomials of different complexity)

 $y = b_0 + b_1 x_1 + b_2 x_2 + b_{12} x_{12} + e$

LABORATORIES

Rapid Sper-A model Building & Use

$$RMSEP = \sqrt{\frac{\sum (Ypred - Yref)^2}{n}}$$

 $Bias = \overline{Y}pred - \overline{Y}ref$

$$SEE = \sqrt{\frac{n}{n-1}}(RMSEP^2 - Bias^2)$$

$$RPD = \frac{STD_{ref}}{SE_{pred}}$$

Vref(Max)-Vref (

 $PA = \frac{Y ret(Max) - Y ref(Min)}{SEP}$

$$SE(chem) = \frac{\sum [SD(i)]}{n-1}$$

GAM= <u>SE(chem)</u> SEP

0 < GAM < 1

GAM (General Accuracy Measure)

$$SEC = \int \frac{\sum (Ypred-Yref)^{2}}{n}$$

$$RMSEP = \sqrt{\sum (Ypred-Yref)^{2}}$$

$$n - 1 - p$$

$$SEP = \sqrt{\sum (Ypred-Yref)^{2} - Bias^{2}}$$

$$n - 1$$

$$SEC > RMSEP$$

$$RPD > 1.6$$

$$R^{2}c > R^{2}p$$

Sper - Analysis Basic Rules

2 (3) groups

- Calibration
- Validation
- Examination (test)

Two ways:

 Running a model on the Cal set → applying the model on the Val set

Y(max-min) *cal* = Y(max-min) *val*

LABORATORIES

 Running a cross calibration modeling on all samples → applying the model on examination set

Analysis can be done by

Using existing statistics software : MATHLAB, SPSS, SAS

LABORATORIES

Specific software dedicated for Sper – A

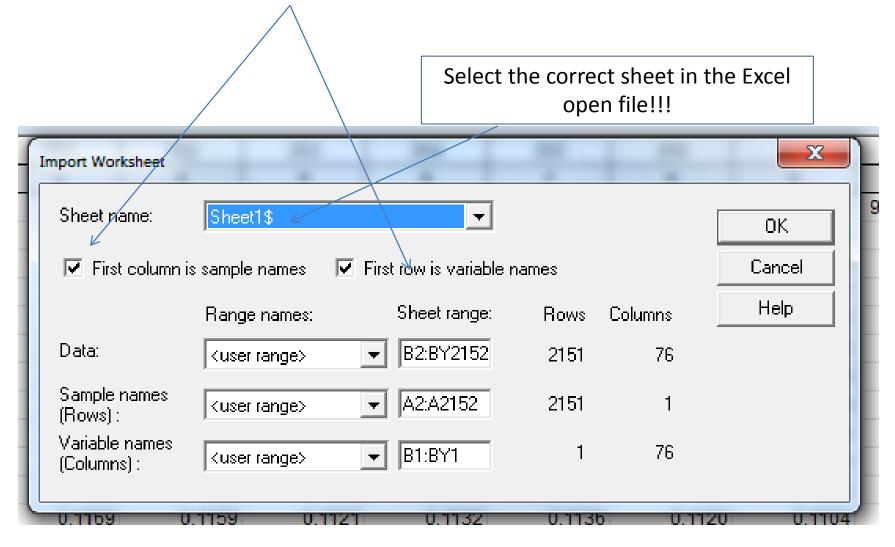
- Unscrambler
- Paracuda

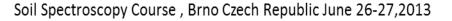
CAMO

LABORATORIES

The Unscrambler[®] A Handy Tool for Doing Chemometrics

Steps to use Unscrabmer


Excel


N 1	-	-	-			Сору	of Loess Diesel	[Compatibility	Mode] - Micros	oft Excel	1	781		
Fi			Page Lavout	Formulas	Data Revie									
			Page Layout			vv view								
	A2	▼ (ੈ	<i>f</i> _* 35	0										
	А	В	С	D	E	F	G	Н		J	К	L	М	
1	Sample No	1	2	3	4	5	6	7	8	9	10	11	12	_
2	350	0.109554	0.1122109	0.1172517	0.1181262	0.1120101	0.114604	0.106207	0.1092466	0.1040154	0.1043194	0.1034673	0.117967	
3	351	0.1090609	0.110128	0.1134719	0.1165864	0.1109623	0.1131335	0.1068466	0.1123147	0.1076239	0.107467	0.1065232	0.1169326	-
4	352	0.1062434	0.1053687	0.1069504	0.111979	0.1076976	0.1078607	0.1064636	0.1123243	0.109267	0.1094098	0.1079751	0.1158651	
5	353	0.1022577	0.1013658	0.1082565	0.1094107	0.1065925	0.1058679	0.109565	0.1095998	0.1072613	0.1069507	0.107226	0.1121172	
6	354	0.09951617	0.1002378	0.1078123	0.1106486	0.1075815	0.1065014	0.1071751	0.1082621	0.1049285	0.1036334	0.1040438	0.1132183	
7	355	0.09980478	0.1019405	0.1094354	0.1129633	0.1099951	0.1087798	0.105702	0.108261	0.1042618	0.1030548	0.1033706	0.1136314	
8	356	0.1036036	0.1065044	0.114116	0.1157863	0.113764	0.1125606	0.1066828	0.1096197	0.105774	0.1061384	0.1064434	0.1120332	
9	357	0.1002391	0.1055055	0.1078948	0.1096817	0.1087413	0.1071391	0.1025995	0.102878	0.101429	0.1017569	0.1022199	0.110383	
10	358	0.09901481	0.1037362	0.1055611	0.1075457	0.1065086	0.1045678	0.1059169	0.106537	0.1051087	0.1054841	0.105332	0.1098302	
11	359	0.09996973	0.1022202	0.1062616	0.1082212	0.1063894	0.1043538	0.1125609	0.1152939	0.1124308	0.1127907	0.1117473	0.1099293	
12	360	0.104174	0.1054184	0.107048	0.10737	0.105803	0.1048919	0.1060905	0.1081196	0.1057354	0.1051464	0.1049735	0.1090584	
13	361	0.1055276	0.1063933	0.1065437	0.1067644	0.1065517	0.1043501	0.1047141	0.1067865	0.1038305	0.1027005	0.1040925	0.1082377	
14	362	0.1053406	0.1059467	0.1052187	0.1062122	0.1067414	0.1035937	0.105385	0.1079217	0.1041345	0.102895	0.1047201	0.1085895	
15	363	0.1041666	0.1041894	0.1031324	0.1055369	0.1042887	0.1033498	0.1060504	0.1093526	0.1051076	0.1043987	0.1032638	0.1117261	
16	364	0.1045722	0.1061242	0.104199	0.1067486	0.1055908	0.1047046	0.1062513	0.1084737	0.1044657	0.1047438	0.1034429	0.1101902	
17	365	0.103628	0.1058873	0.1063197	0.1086868	0.1073913	0.1062009	0.1058967	0.1073878	0.1041182	0.1052316	0.1040976	0.1086543	
18	366	0.1005694	0.1020208	0.1091167	0.1111554	0.1090194	0.1075351	0.1049231	0.106535	0.1045047	0.1061615	0.1050123	0.1081324	
19	367	0.1036887	0.1044917	0.1073315	0.1101712	0.10684	0.1073166	0.103958	0.1047504	0.10281	0.1039172	0.1036436	0.1063277	
20	368	0.1043254	0.1047097	0.1070963	0.1093705	0.1059665	0.1068001	0.1034557	0.1048269	0.1028736	0.1023593	0.102392	0.1067168	
21	369	0.1035261	0.1039329	0.1078113	0.108732	0.1061183	0.1063475	0.1034656	0.1058774	0.1038614	0.1016207	0.1015275	0.108526	
22	370	0.1047737	0.1068714	0.1075083	0.108235	0.1067264	0.1075412	0.1045362	0.1047622	0.1028275	0.1027881	0.1024373	0.109433	
23	371	0.1046701	0.1055754	0.1071625	0.1083571	0.1071198	0.107068	0.1068236	0.1062215	0.1038109	0.1046044	0.1052067	0.1079477	
24	372	0.1038639	0.1040094	0.1070068	0.1084542	0.1071388	0.1061206	0.1082295	0.1081087	0.1050505	0.1060904	0.1073137	0.1069357	
V	/aveler	ngth ዞ	rse , Brno	Czech Repu	i blic June 2	6 27,2013						ABORATORIES		20
												LABORATORIES		58

			U5 Data Unscrambler ASCII.
The Unscrambler @ File View Results Help			ASCII
New New Design Open	Ctrl+N Ctrl+O		Lotus
Import Import 3-D	•	Unscrambler Results Ctrl+U Unscrambler Data	Excel
UDI	÷	US Results US Data	Matlab
Print Setup System Setup		Unscrambler ASCII ASCII	NSAS
1 STS_NEW 2 Copy of 130505_Trays015_015_EntireEgg_oneSheet_UNSC 3 female_male_correct	[d] [d]	Lotus Excel	Database
4 female_correct Exit	[d] Alt+F4	Matlab NSAS	JCAMP-DX
		JCAMP-DX_	Tracker
		Tracker APC GRAMS	APC
	1	MVACDF CLASS-PA & SpectrOn	GRAMS
	6	Indico BFF3	MVACDF
		OPUS User Defined Import (UDI)	CLASS-PA & Spect
		User Defined Import (UDI)	Indico

REF3

The data not for calculation : Wavelengths, sample number (if exists in Excel)

The Excel data in Unscrambler environment

Copy of	Loess Dies	el															
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
35 <mark>0</mark>	1	0.1096	0.1122	0.1173	0.1181	0.1120	0.1146	0.1062	0.1092	0.1040	0.1043	0.1035	0.1180	0.1164	0.1103	0.1184	0.1195
35 <mark>1</mark>	2	0.1091	0.1101	0.1135	0.1166	0.1110	0.1131	0.1068	0.1123	0.1076	0.1075	0.1065	0.1169	0.1157	0.1099	0.1127	0.1131
35 <mark>2</mark>	3	0.1062	0.1054	0.1070	0.1120	0.1077	0.1079	0.1065	0.1123	0.1093	0.1094	0.1080	0.1159	0.1153	0.1105	0.1088	0.1076
35 <mark>3</mark>	4	0.1023	0.1014	0.1083	0.1094	0.1066	0.1059	0.1096	0.1096	0.1073	0.1070	0.1072	0.1121	0.1121	0.1073	0.1132	0.1112
35 <mark>4</mark>	5	9.9516e-02	0.1002	0.1078	0.1106	0.1076	0.1065	0.1072	0.1083	0.1049	0.1036	0.1040	0.1132	0.1142	0.1100	0.1148	0.1144
35 <mark>5</mark>	6	9.9805e-02	0.1019	0.1094	0.1130	0.1100	0.1088	0.1057	0.1083	0.1043	0.1031	0.1034	0.1136	0.1147	0.1113	0.1137	0.1141
35 <mark>6</mark>	7	0.1036	0.1065	0.1141	0.1158	0.1138	0.1126	0.1067	0.1096	0.1058	0.1061	0.1064	0.1120	0.1119	0.1092	0.1098	0.1095
35 <mark>7</mark>	8	0.1002	0.1055	0.1079	0.1097	0.1087	0.1071	0.1026	0.1029	0.1014	0.1018	0.1022	0.1104	0.1095	0.1048	0.1099	0.1081
35 <mark>8</mark>	9	9.9015e-02	0.1037	0.1056	0.1075	0.1065	0.1046	0.1059	0.1065	0.1051	0.1055	0.1053	0.1098	0.1087	0.1037	0.1086	0.1075
35 <mark>9</mark>	10	9.9970e-02	0.1022	0.1063	0.1082	0.1064	0.1044	0.1126	0.1153	0.1124	0.1128	0.1117	0.1099	0.1089	0.1050	0.1070	0.1077
36 <mark>0</mark>	11	0.1042	0.1054	0.1070	0.1074	0.1058	0.1049	0.1061	0.1081	0.1057	0.1051	0.1050	0.1091	0.1082	0.1064	0.1097	0.1106
36 <mark>1</mark>	12	0.1055	0.1064	0.1065	0.1068	0.1066	0.1044	0.1047	0.1068	0.1038	0.1027	0.1041	0.1082	0.1081	0.1055	0.1106	0.1105
36 <mark>2</mark>	13	0.1053	0.1059	0.1052	0.1062	0.1067	0.1036	0.1054	0.1079	0.1041	0.1029	0.1047	0.1086	0.1085	0.1052	0.1107	0.1100
36 <mark>3</mark>	14	0.1042	0.1042	0.1031	0.1055	0.1043	0.1033	0.1061	0.1094	0.1051	0.1044	0.1033	0.1117	0.1097	0.1082	0.1110	0.1115
36 <mark>4</mark>	15	0.1046	0.1061	0.1042	0.1067	0.1056	0.1047	0.1063	0.1085	0.1045	0.1047	0.1034	0.1102	0.1093	0.1061	0.1096	0.1085
36 <mark>5</mark>	16	0.1036	0.1059	0.1063	0.1087	0.1074	0.1062	0.1059	0.1074	0.1041	0.1052	0.1041	0.1087	0.1089	0.1051	0.1090	0.1075
366	17	0 1006	0 1020	0 1001	0 1112	0 1000	0 1075	0 10/0	0 1065	0 10/15	0 1062	0 1050	0 1081	0 1080	0 1068	0 1000	0 1100

The yellow column and raw are NOT for calculation!

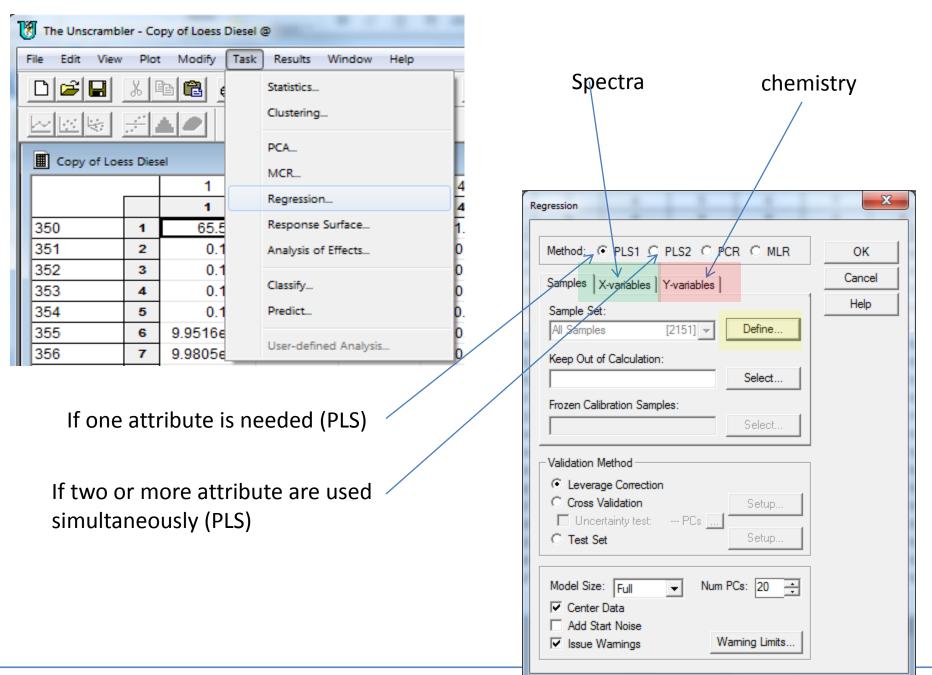
Soil Spectroscopy Course , Brno Czech Republic June 26-27,2013

Preparing Unscramble data for processing:

				JU	= E	Т					
					N						
			Uns	scrambler	E	xcel					
ſ	ramb	ler - Co	py of Loes	s Diesel @	Press of the local division of the local div						
Ľ	g - View	Plot	Modify	Task Results Windo	w Help	_					
	ile 🖬	XE		Compute General		$\perp \times$	18	া না ভ	$f_{\mathbf{x}}$	কা	5
			Т	Transform	+		Smo	othing	•	F	
		7	2	Sort Samples			Norr	nalize		L	
	f Loe	ess Diese	el s	Sort Samples by Sets			Spec	troscopic			
Γ				Sort Variables by Sets			MSC	/EMSC			7
L	Ē			Shift Variables			Nois	e		ш	7
L	—	1	L ,	Reverse Sample Order			Deriv	vatives		-3	804.8
L	3!	2	F	Reverse Variable Order			Base	line		-6 11	0.1
L	3:	4	-				SNV.	_		9	0.1
L		5	2	Swap 3-D Layout						19	0.1
L	3.	6	2	Swap Samples & Variables	•		Cent	ter and scale		5	0.1
L	3:	7	Т	Toggle 3-D Layouts	Ctrl+3		Redu	uce (Average)		18	0.1
L	3	8	L. L.	Undo	Ctrl+Z		Tran	spose		16	0.1
L	3.	9 10	F	Redo	Ctrl+Y		User	-defined		1	0.1
L	3:	10	-			0.10		0.1064	0.10	-	0.1
	3:	12	F	Properties		0.10		0.1058	0.10		0.1
	31	13	L	Layout	Ctrl+L	0.10		0.1066	0.10		0.1
	31	14	E	Edit Set	Ctrl+E	0.10	62	0.1067	0.10	36	0.1
	3	15			0.1001	0.10		0.1043	0.10		0.1
						~ * *					

Soil Spectroscopy Course , Brno Czech Republic June 26-27,2013

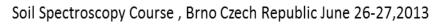
	Copy of Lo	oess Di	esel								
			350	351	352	353	354	355	356	357	358
Chemi			1	2	3	4	5	6	7	8	9
	1	1	0.1096	0.1091	0.1062	0.1023	9.9516e-02	9.9805e-02	0.1036	0.1002	9.9015
\sim	2	2	0.1122	0.1101	0.1054	0.1014	0.1002	0.1019	0.1065	0.1055	0.
	3	3	0.1173	0.1135	0.1070	0.1083	0.1078	0.1094	0.1141	0.1079	0.
	4	4	0.1181	0.1166	0.1120	0.1094	0.1106	0.1130	0.1158	0.1097	0.
	5	5	0.1120	0.1110	0.1077	0.1066	0.1076	0.1100	0.1138	0.1087	0.
	6	6	0.1146	0.1131	0.1079	0.1059	0.1065	0.1088	0.1126	0.1071	0.
	7	7	0.1062	0.1068	0.1065	0.1096	0.1072	0.1057	0.1067	0.1026	0.
	8	8	0.1092	0.1123	0.1123	0.1096	0.1083	0.1083	0.1096	0.1029	0.
	9	9	0.1040	0.1076	0.1093	0.1073	0.1049	0.1043	0.1058	0.1014	0.
	10	10	0.1043	0.1075	0.1094	0.1070	0.1036	0.1031	0.1061	0.1018	0.
	11	11	0.1035	0.1065	0.1080	0.1072	0.1040	0.1034	0.1064	0.1022	0.
	12	12	0.1180	0.1169	0.1159	0.1121	0.1132	0.1136	0.1120	0.1104	0.
	13	13	0.1164	0.1157	0.1153	0.1121	0.1142	0.1147	0.1119	0.1095	0.
1	14	14	0.1103	0.1099	0.1105	0.1073	0.1100	0.1113	0.1092	0.1048	0.
	15	15	0.1184	0.1127	0.1088	0.1132	0.1148	0.1137	0.1098	0.1099	0.
	16	16	0.1195	0.1131	0.1076	0.1112	0.1144	0.1141	0.1095	0.1081	0.
	17	17	0.1156	0.1093	0.1050	0.1109	0.1120	0.1097	0.1042	0.1036	0.
	10	40	0.1106	0 4407	0 1005	0.4400	0 11 40	0 4404	0 1075	0 10 10	0


Sample Number , Brno Czech Republic June 26-27,2013

Copy chemistry from Excel

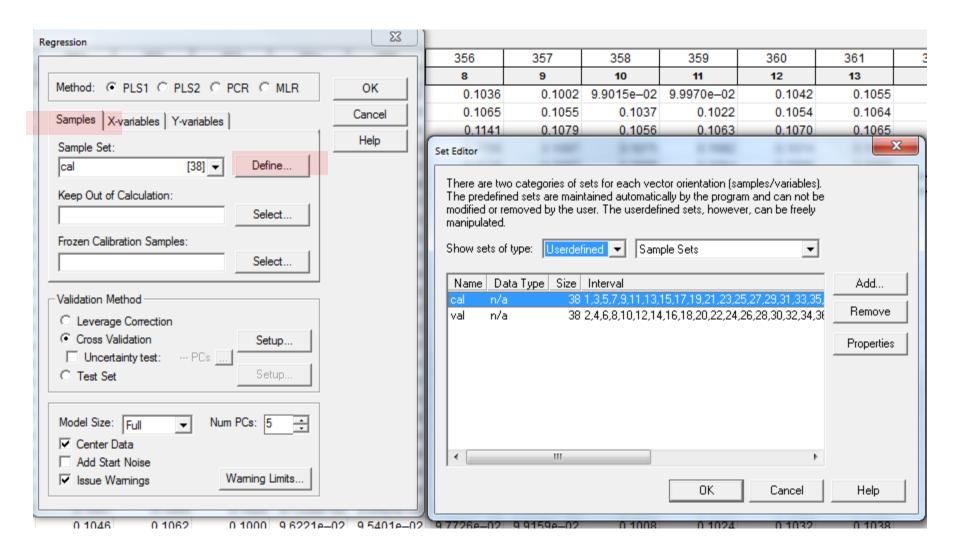
		TPH	350	351	352	353	354	355	356	357	
		1	2	3	4	5	6	7	8	9	
*	1	65.5693	0.1096	0.1091	0.1062	0.1023	9.9516e-02	9.9805e-02	0.1036	0.1002	9.9
*	2	132.7743	0.1122	0.1101	0.1054	0.1014	0.1002	0.1019	0.1065	0.1055	
*	3	267.1843	0.1173	0.1135	0.1070	0.1083	0.1078	0.1094	0.1141	0.1079	
*	4	401.5943	0.1181	0.1166	0.1120	0.1094	0.1106	0.1130	0.1158	0.1097	
*	5	536.0043	0.1120	0.1110	0.1077	0.1066	0.1076	0.1100	0.1138	0.1087	
*	6	670.4143	0.1146	0.1131	0.1079	0.1059	0.1065	0.1088	0.1126	0.1071	
*	7	804.8243	0.1062	0.1068	0.1065	0.1096	0.1072	0.1057	0.1067	0.1026	
*	8	939.2343	0.1092	0.1123	0.1123	0.1096	0.1083	0.1083	0.1096	0.1029	
*	9	1.0736e+03	0.1040	0.1076	0.1093	0.1073	0.1049	0.1043	0.1058	0.1014	
*	10	1.2081e+03	0.1043	0.1075	0.1094	0.1070	0.1036	0.1031	0.1061	0.1018	
*	11	1.3425e+03	0.1035	0.1065	0.1080	0.1072	0.1040	0.1034	0.1064	0.1022	
*	12	1.4769e+03	0.1180	0.1169	0.1159	0.1121	0.1132	0.1136	0.1120	0.1104	
*	13	1.6113e+03	0.1164	0.1157	0.1153	0.1121	0.1142	0.1147	0.1119	0.1095	
*	14	1.7457e+03	0.1103	0.1099	0.1105	0.1073	0.1100	0.1113	0.1092	0.1048	
*	15	1.8801e+03	0.1184	0.1127	0.1088	0.1132	0.1148	0.1137	0.1098	0.1099	
*	16	2.0145e+03	0.1195	0.1131	0.1076	0.1112	0.1144	0.1141	0.1095	0.1081	
*	17	2.1489e+03	0.1156	0.1093	0.1050	0.1109	0.1120	0.1097	0.1042	0.1036	
*	18	2.2833e+03	0.1186	0.1127	0.1085	0.1130	0.1140	0.1121	0.1075	0.1049	
*	19	2.4177e+03	0.1187	0.1172	0.1156	0.1132	0.1130	0.1126	0.1115	0.1125	
*	20	2.5522e+03	0.1163	0.1149	0.1129	0.1084	0.1097	0.1096	0.1063	0.1086	
*	21	2.6866e+03	0.1183	0.1194	0.1201	0.1164	0.1169	0.1158	0.1116	0.1139	
*	22	2.8210e+03	0.1195	0.1195	0.1184	0.1137	0.1145	0.1146	0.1124	0.1130	
*	23	2.9554e+03	0.1197	0.1207	0.1197	0.1144	0.1150	0.1146	0.1111	0.1111	
*	24	3.0898e+03	0.1035	0.1067	0.1094	0.1020	9.7332e-02	9.6085e-02	9.8539e-02	9.9847e-02	

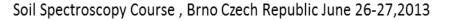
Regression	23							
		356	357	358	359	360	361	36
		8	9	10	11	12	13	14
Method: PLS1 PLS2 PCR MLR	ОК	0.1036	0.1002	9.9015e-02	9.9970e-02	0.1042	0.1055	0
Samples X-variables Y-variables	Cancel	0.1065	0.1055	0.1037	0.1022	0.1054	0.1064	0
	Help	0 1141	0 1079	0 1056	0 1063	0 1070	0 1065	0
Variable Set:		Set Editor					×	_ 0
<new 1="" set=""> [1] Define</new>		T1 .						0
Keep Out of Calculation: Select Weights All 1.0 Weights		The predefin modified or re manipulated.	ed sets are main emoved by the u	itained automatic	ally by the progra ined sets, howev	amples/variables). am and can not be ver, can be freely		
		Name D	ata Type 🛛 Sia	ze Interval			Add	0
Validation Method		spectra Sp		51 2-2152				0
C Leverage Correction		TPH No	on-spectra	11			Remove	0
Cross Validation Uncertainty test: PCs Setup Setup							Properties	
Model Size: Full Num PCs: 5 Add Start Noise								000000000000000000000000000000000000000
Vaming Limits					0K	Cancel	Help	



Set Editor	×
There are two categories of sets for each vector orientation (samples/variables). The predefined sets are maintained automatically by the program and can not be modified or removed by the user. The userdefined sets, however, can be freely manipulated.	
Show sets of type: Userdefined 💌 Variable Sets 💌	
Name Data Type Size Interval	Add
	Remove
	Properties
OK Cancel	Help

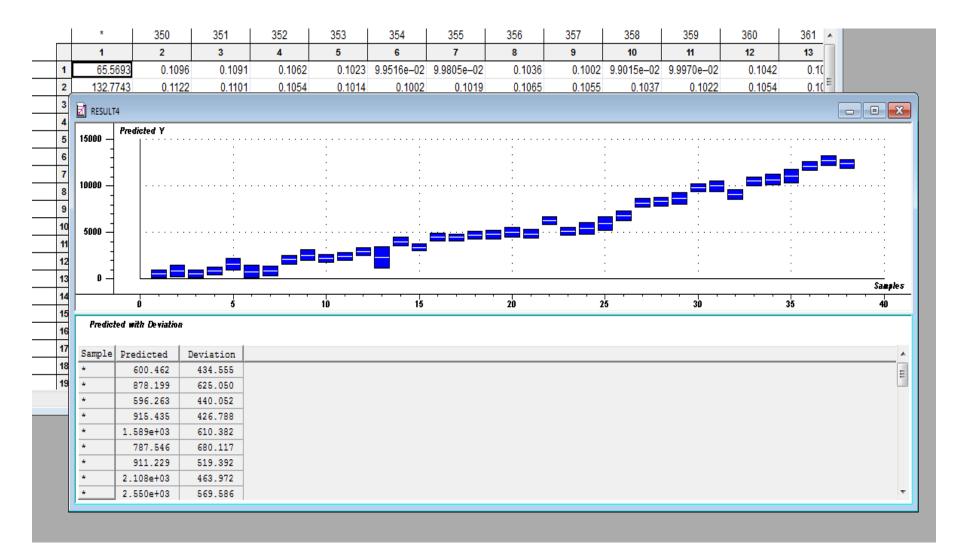
Change	
New Variable Set	×
General Name: Spectra Info Data type: Spectra Interval (valid ange is 1 through 2151) 1-2151 Select Special intervals C All variables C Selected variables in the currently active Editor	OK Cancel Help
C Every 2 🕂 variables, counting from 1 🕂	
Interaction and square effects	
Select	


¥

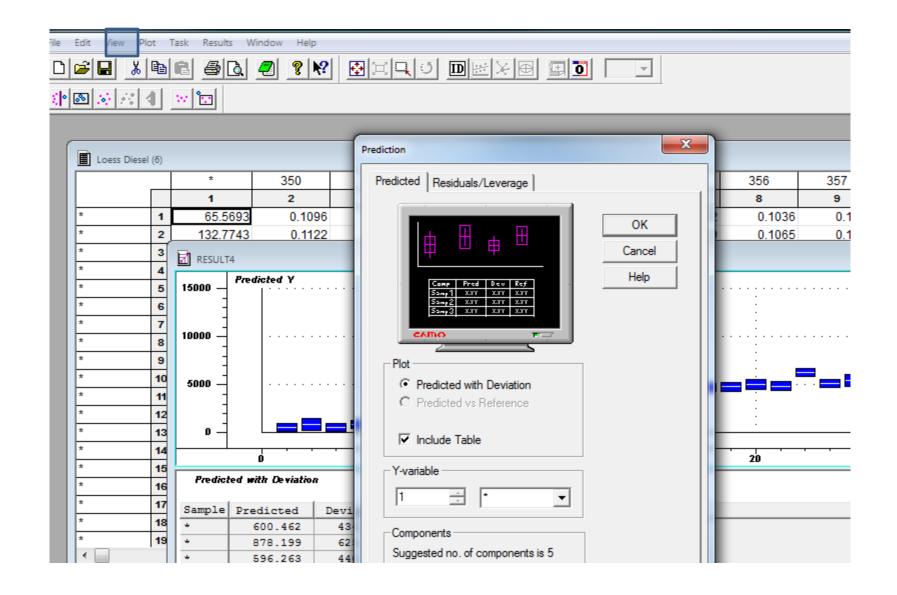

Set Editor	×		
There are two categories of sets for each vector orientation (samples/variables). The predefined sets are maintained automatically by the program and can not be modified or removed by the user. The userdefined sets, however, can be freely manipulated. Show sets of type: Userdefined Variable Sets			
Name Data Type Size Interval	Add		
Spectra Info Spectra 2151 1-2151	Remove	New Variable Set	×
		General	
	Properties	Name: Spectra Info	OK
			Cancel
		Data type: Spectra	
		Interval (valid range is 1 through 2152)	Help
		2-2152 Select	
OK Cancel	Help	C All variables	
		C Selected variables in the currently active Editor	
		C Every 2 😅 variables, counting from 1 🚍	
		Update	
		Interaction and square effects	
		Select	

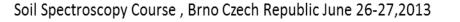
¥

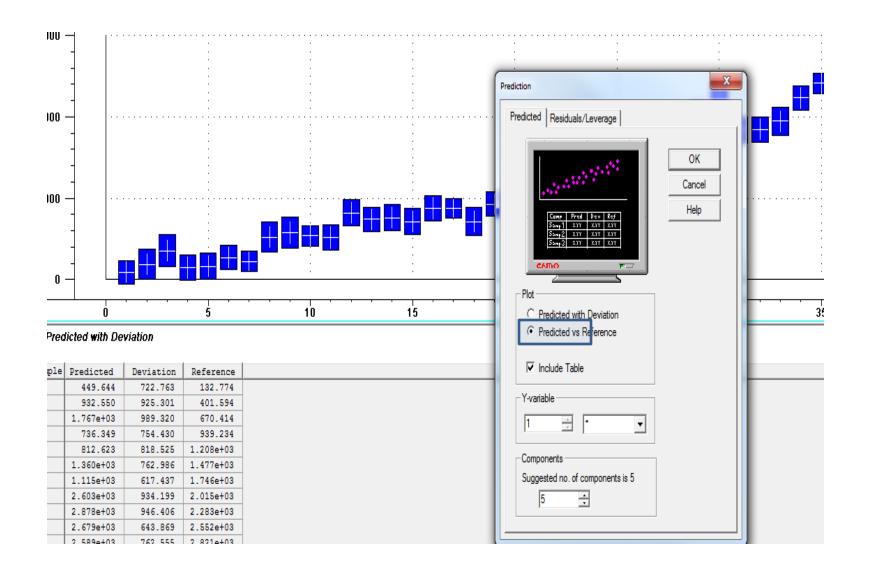
Regression	×
Method: PLS1 PLS2 PCR MLR	ОК
Samples X-variables Y-variables	Cancel
Sample Set:	Help
cal [38] Define	
Keep Out of Calculation:	
Select	
Frozen Calibration Samples:	
Select	
Validation Method	
C Leverage Correction	
Cross Validation Setup	
✓ Uncertainty test: Opt #PCs	
C Test Set Setup	
Model Size: Full 🗸 Num PCs: 5 📫	
Center Data	
Add Start Noise	
✓ Issue Warnings Warning Limits	

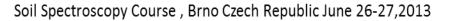


350	351	352	353	354	355	356	357	358	359	360	
2	3	4	5	6	7	8	9	10	11	12	
0.1096	0.1091	0.1062	0.1023	9.9516e-02	9.9805e-02	0.1036	0.1002	9.9015e-02	9.9970e-02	0.1042	
0.1122	0.1101	0.1054	0.1014	0.1002	0.1019	0.1065	0.1055	0.1037	0.1022	0.1054	
0.1173	0.1135	0.1070	0.1083	PLS1 Regressio	n Progress			0.1056	0.1063	0.1070	
0.1181	0.1166	0.1120	0.1094					0.1075	0.1082	0.1074	
0.1120	0.1110	0.1077	0.1066		Data table: Loess Diesel (5)					0.1058	
0.1146	0.1131	0.1079	0.1059	DC Mar		0.1046	0.1044	0.1049			
0.1062	0.1068	0.1065	0.1096	PC Warn		anance			0.1126	0.1061	
0.1092	0.1123	0.1123	0.1096	0 2				0.1065	0.1153	0.1081	
0.1040	0.1076	0.1093	0.1073	2 35	8.40e+06 2.36e+06			0.1051	0.1124	0.1057	
0.1043	0.1075	0.1094	0.1070	2 35				0.1055	0.1128	0.1051	
0.1035	0.1065	0.1080	0.1072	4 320				0.1053	0.1117	0.1050	
0.1180	0.1169	0.1159	0.1121	5 28				0.1098	0.1099	0.1091	
0.1164	0.1157	0.1153	0.1121							0.1082	
0.1103	0.1099	0.1105	0.1073					0.1037	0.1050	0.1064	
0.1184	0.1127	0.1088	0.1132					0.1086	0.1070	0.1097	
0.1195	0.1131	0.1076	0.1112					0.1075	0.1077	0.1106	
0.1156	0.1093	0.1050	0.1109	(5) The	calculation com	pleted successfu	illy.	0.1044	0.1061	0.1070	
0.1186	0.1127	0.1085	0.1130					0.1060	0.1094	0.1095	
0.1187	0.1172	0.1156	0.1132					0.1132	0.1134	0.1116	
0.1163	0.1149	0.1129	0.1084			_		0.1090	0.1082	0.1091	
0.1183	0.1194	0.1201	0.1164		View	Close	:	0.1148	0.1145	0.1123	
0.1195	0.1195	0.1184	0.1137					0.1128	0.1122	0.1126	
0.1197	0.1207	0.1197	0.1144	0.1150	0.1146	0.1111	0.1111	0.1116	0.1124	0.1135	
0 1035	0 1067	0 100/	0 1020	0 73326_02	0.60856-02	0.85306_02	0 08/170_02	0 1025	0 1058	0 1063	

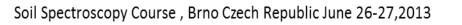



1	352	353	354	355	356	357	358	359	360			
	4	5	6	7	8	9	10	11	12			
.1091	0.1062	0.1023	9.9516e-02	9.9805e-0	0.1036	0.1002	9.9015e-02	9.9970e-02	0.1042			
.1101	0.1054	0.1014	0.1002	0.101	0.1065	0.1055	0.1037	0.1022	0.1054			
.1135	0.1070	0.1083	0.1078	0.109	0.1141	0.1079	0.1056	0.1063	0.1070			
.1166	0.1120	0.1094	0.1106	0.113	0.1158	0.1097	0.1075	0.1082	0.1074			
).1110	0.1077	0.1066	0.1076	0.110	0.1138	0.1087	0.1065	0.1064	0.1058			
.1131	0.1079	0.1059	0.1065	0.108	38 0.1126	0.1071	0.1046	0.1044	0.1049			
.1068	0.1065	0.1096	0.1072	0.1	rediction	1.100	10. October 1		X 061			
.1123	0.1123	0.1096	0.1083	0.1	rediction		1.000		081			
.1076	0.1093	0.1073	0.1049	0.1					057			
.1075	0.1094	0.1070	0.1036	0.1	Samples X-vari	ОК 051						
.1065	0.1080	0.1072	0.1040	0.1	Sample Set: Cancel D5							
.1169	0.1159	0.1121	0.1132	0.1	CAL	1001	✓ Define		D91			
.1157	0.1153	0.1121	0.1142	0.1	CAL	[38]	Define	— н	elp D82			
.1099	0.1105	0.1073	0.1100	0.1	Keep Out of Cal	culation:			064			
.1127	0.1088	0.1132	0.1148	0.1			Select		097			
.1131	0.1076	0.1112	0.1144	0.1	1				106			
.1093	0.1050	0.1109	0.1120	0.1					070			
.1127	0.1085	0.1130	0.1140	0.1		TPH-CAL	Fin		095			
.1172	0.1156	0.1132	0.1130	0.1	Model Name:	ITHOAL			116			
					Number of Comp	onents: 5	÷					
					Number of Destro		_	Varia	nce			
					Number of Pretre			Pretr	eat			
					Issue Wami	nas	Warning Limits	s				



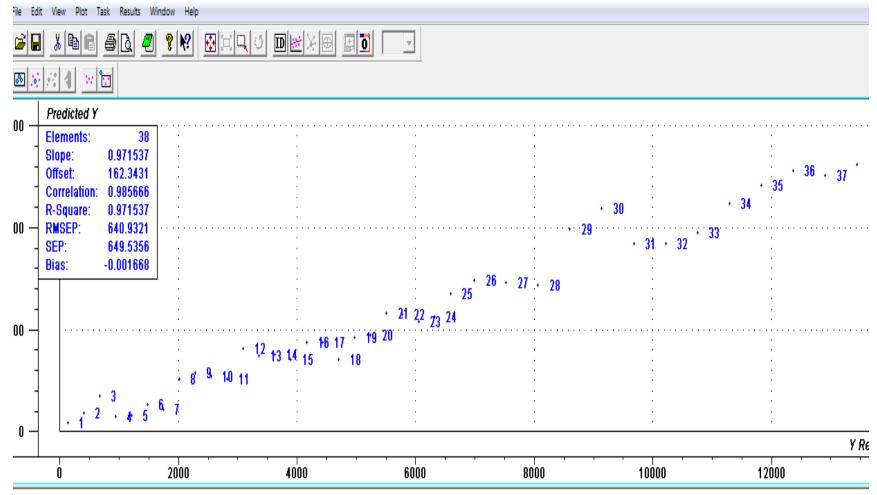


File Edit	Vie	ew Plot Modi	fy Task Result	s Window H	lelp								
	ð	(b 6 /) 🖪 🦉 🥤	? 💦 +🖂	+11 × 🖻		× 🗗 🖂	CM					
		*	350	351	352	353	354	355	356				
		1	2	3	4	5	6	7	8				
*	1	65.5693	0.1096	Predic	tion		And in case of the		X 1036				
*	2	132.7743	0.1122			1.000	1.000		1.1065				
*	3	267.1843	0.1173).1141				
*	4	401.5943	0.1181	Sa	amples X-variab	es Y-reference	Pretreat Vars	ОК).1158				
*	5	536.0043	0.1120		Include Viefer		_	Cance).1138				
*	6	670.4143	0.1146		Include Y-reference								
*	7	804.8243	0.1062		ariable Set:			Help	1.1067				
*	8	939.2343	0.1092	T	PH	[1] 👻	Define		1.1096				
*	9	1.0736e+03	0.1040					-	1.1058				
*	10	1.2081e+03	0.1043					_	1.1061				
*	11	1.3425e+03	0.1035						0.1064				
*	12	1.4769e+03	0.1180		odel Name:	TPH-CAL	Find).1120				
*	13	1.6113e+03	0.1164	TVI	odel Name:				0.1119				
*	14	1.7457e+03	0.1103	N	umber of Compone	ents: 5 🕂			1.1092				
*	15	1.8801e+03	0.1184	N	umber of Pretreatr	mente: 0	1	Variance					
*	16	2.0145e+03	0.1195		under of Treffeat]	Pretreat	0.1095				
*	17	2.1489e+03	0.1156						.1042				
*	18	2.2833e+03	0.1186		Issue Warnings		Warning Limits	1	1.1075				
*	19	2.4177e+03	0.1187		issue warnings	,	rearing cinits		0.1115				
*	20	2.5522e+03	0.1163						.1063				
*	21	2.6866e+03	0.1183	0.1194	0.1201	0.1164	0.1169	0.1158	0.1116				

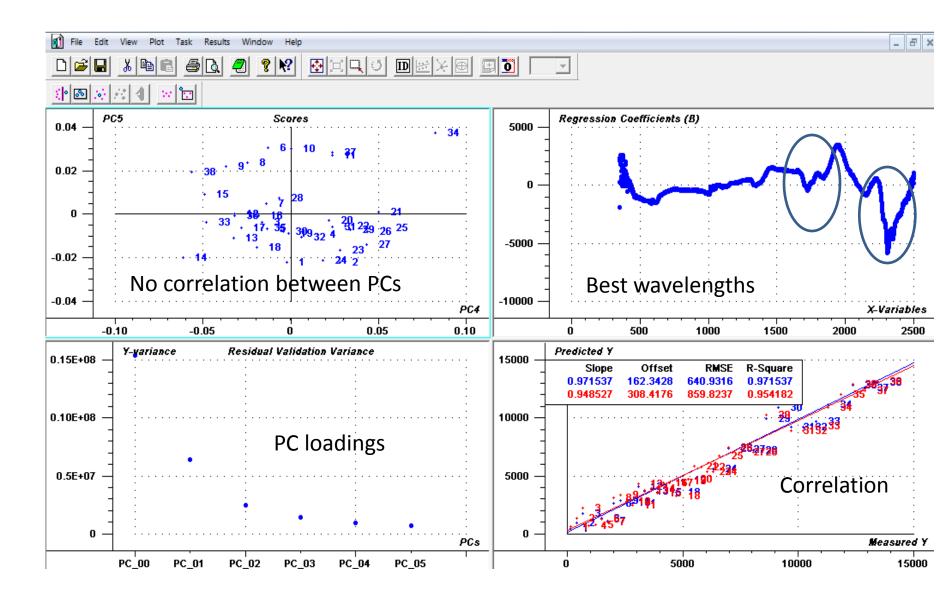

Save the model and Close the Cal results, go to predict

Edit View	Plot	N	lodify [Task	Results	Window H	lelp							
2	XB		B (2	Statistics.	-		X	r 1	↔ <i>f</i> ∗ 🗗	50			
	<i>#</i>	, İ.		(Ilustering_									
		- 12			PCA									
					MCR									
Loess	Diesel (6)				Regressio	on								
		Т			Response	e Surface			352	353	354	355	356	357
					Analysis (of Effects			4	5	6	7	8	9
*	1	1	6		Arialysis (or chects		91	0.1062	0.1023	9.9516e-02	9.9805e-02	0.1036	0.
*	2	2	13		Classify)1	0.1054	0.1014	0.1002	0.1019	0.1065	0.
*	3	8	26		Predict			35	0.1070	0.1083	0.1078	0.1094	0.1141	0.
*	4	L	40	-				56	0.1120	0.1094	0.1106	0.1130	0.1158	0.
*	5	5	- 53	1	Jser-defi	ined Analysis		10	0.1077	0.1066	0.1076	0.1100	0.1138	0.
*	6	5	670	0.414	3	0.1146	0.113	31	0.1079	0.1059	0.1065	0.1088	0.1126	0.
*	7	r	804	4.8243	3	0.1062	0.106	68	0.1065	0.1096	0.1072	0.1057	0.1067	0.
*	8	8	939	9.2343	3	0.1092	0.112	23	0.1123	0.1096	0.1083	0.1083	0.1096	0.
*	9	•	1.073	6e+03	3	0.1040	0.107	76	0.1093	0.1073	0.1049	0.1043	0.1058	0.
*	1	0	1.208	1e+03	3	0.1043	0.107	75	0.1094	0.1070	0.1036	0.1031	0.1061	0.
*	1	1	1.342	5e+03	3	0.1035	0.106	65	0.1080	0.1072	0.1040	0.1034	0.1064	0.
*	10	2	1.476	9e+03	3	0.1180	0.116	69	0.1159	0.1121	0.1132	0.1136	0.1120	0.
*	1	3	1.611	3e+03	3	0.1164	0.115	57	0.1153	0.1121	0.1142	0.1147	0.1119	0.
*	14	4	1.745	7e+03	3	0.1103	0.109	99	0.1105	0.1073	0.1100	0.1113	0.1092	0
upy cou	150 1	5	1.2 <u>29</u>	19+0	20000	ເ ງິນ1181 20-	1, 9,112	37	0 1088	0 1132	0 11/19	0.1137		

Soil Spectroscopy course , 15 not 22011 Republic Julie 20-21, 2013



*	350	351	352	353	354	355	356	357	358	359	360	36	61 🔺	
1	2	3	4	5	6	7	8	9	10	11	12	1	3	
65.5693	0.1096	0.1091	0.1062	0.1023	9.9516e-02	9.9805e-02	0.103	Get Model with 21	51 X-Variables					
132.7743	0.1122	0.110	Prediction				23					_		
267.1843	0.1173	0.113					1	Look in:	🔒 BRENO		-	E	5-5- 5-5-	
401.5943	0.1181	0.116						News	, 		Creator Mo	odified		
536.0043	0.1120	0.111	Samples X-	variables Y-refe	rence Pretreat	Vars	ОК	Name		vpe e folder		16/2013 (2.15	
670.4143	0.1146	0.113	Sample Set:				Cancel	RESULT1		nsc PLS1 Mer		4/2013 8:		
804.8243	0.1062	0.106	VAL	[38	3] 🚽 🛛 Defin	ie		TPH-CAL		nsc PLS1 Mer		4/2013 0. 16/2013 9		
939.2343	0.1092	0.112	1		·		Help	in the second	0.		40 0.	.0.2010.		
0736e+03	0.1040	0.107	Keep Out of	Calculation:										
2081e+03	0.1043	0.107			Selec	ct								
3425e+03	0.1035	0.106												
4769e+03	0.1180	0.116						File name:	TPH-CAL			_	Calaat	
6113e+03	0.1164	0.115	Model Name:			Find		File fiame.	THREAL				Select	
7457e+03	0.1103	0.109						Models of type	e: All			-	Cancel	i
8801e+03	0.1184	0.112	Number of Co	omponents:	- <u>-</u>			Mine only	,					
0145e+03	0.1195	0.113	Number of Pr	retreatments:			ariance	I Mine only						
1489e+03	0.1156	0.109				F	Pretreat							
2833e+03	0.1186	0.112												
4177e+03	0.1187	0.117	🗌 🗖 Issue W.	aminas	Warning L	imits		Information:						
								PLS1					Print	
								1 2001			ſ	<u> </u>		
									ne: TPH-CAL		l		A Constitution	. 1
								Directory:	C:\EYAL Guest	\DRIVEE\COU	RSE\BRENO\		Warning	<u> S</u>
								Creator: Date:		13 9:22 AM				
								Software V	Version: v9					



Pradicted with Nevistian

PLSR results with 5PC

Preprocessing

Raw reflectance (R) \rightarrow Manipulated data (M)

(Then running statistical method to perform a model)

Manipulation is any mathematical analysis done on the data base equally (every spectrum treated the same)

Some used examples:

- 1) Noise reduction (moving average)
- 2) CR (Continuum Removal)
- 3) Derivatives (first, second)
- 4) $R \rightarrow \log(1/R)$
- 5) Data reduction (from n wavelength number to n/m number (m > n)
- 6) Kubelka Munk

As Sper-A is an Empirical Approach there is no way to know which manipulation will lead the best performance

It is possible that more than one mathematical calculation will be used.

Some common Multiple Combinations:

- 1) Smoothing $\rightarrow \log(1/R) \rightarrow \text{Derivative} \rightarrow CR$
- 2) log (1/R) \rightarrow smoothing \rightarrow CR \rightarrow derivative
- 3) Smoothing \rightarrow reduction \rightarrow Derivative

It is almost impossible to run all preprocessing with all data mining algorithms

The Solution

A program that will do it automatically providing only the "best model"

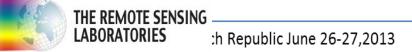
Modeling

• The Problem:

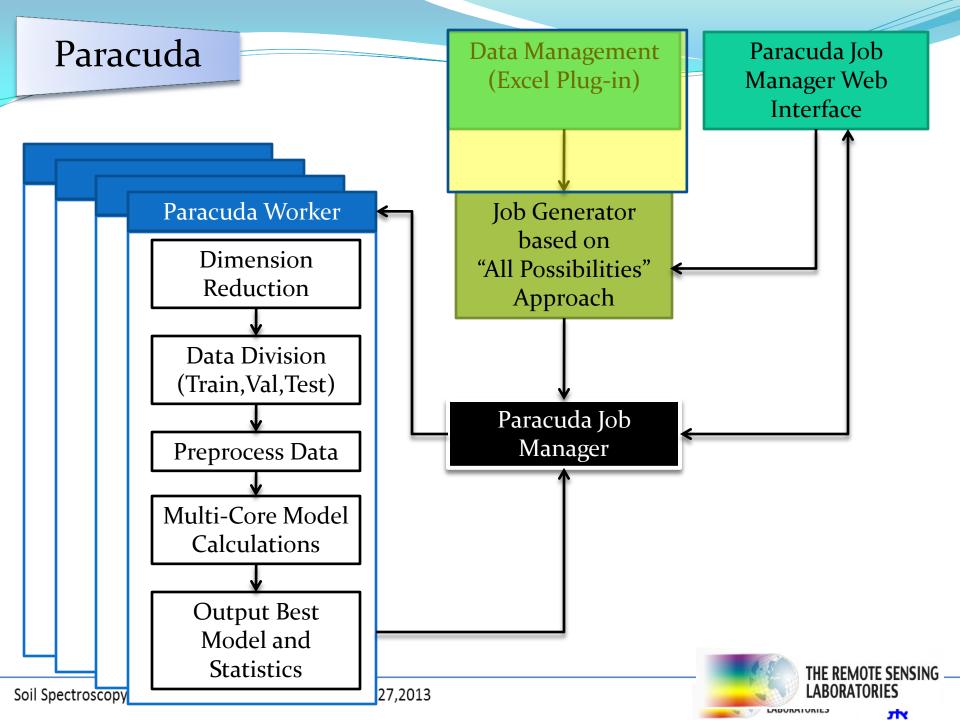
- Modeling spectroscopy data is a complicated task due to many preprocessing procedures available.
- An "All options" approach is the best solution for reliable models, but **very difficult** to implement to many reasons:
 - Computing Power
 - No automated software available
 - Skilled personal

THE REMOTE SENSING

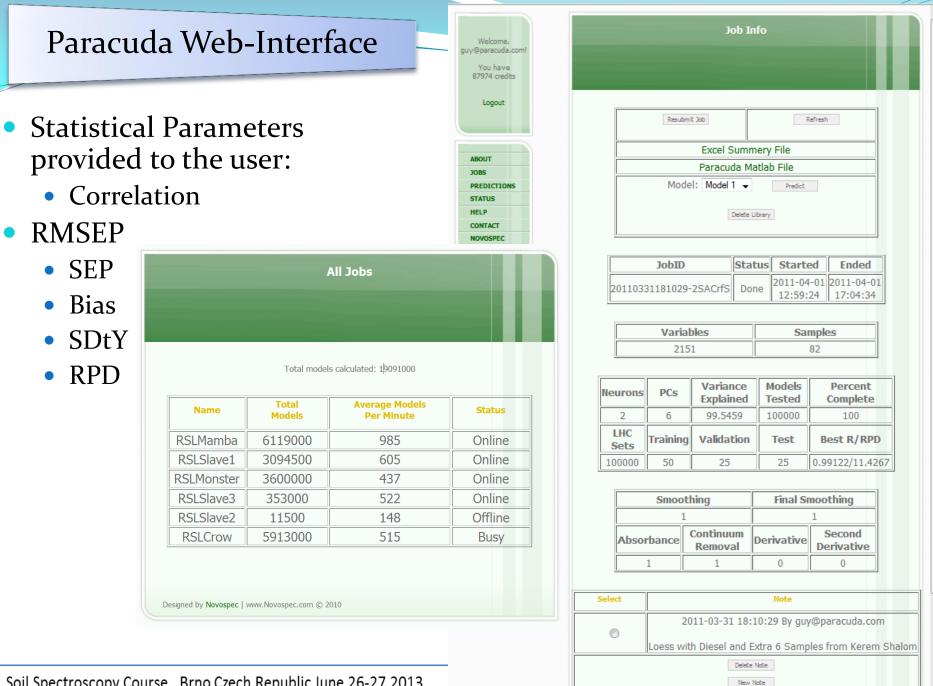
- Complicated algorithms
- Limited software capabilities



Paracuda


- The Solution:
 - Design a software suite that will include:
 - All Preprocessing algorithms.
 - All NIRA Statistical approaches.
 - Automated processing system to utilize the "All Possibilities" approach.
 - Distributed computing system for rapid model evaluation.

A Simple "One Click" solution


	Novospec Ltd. Paracuda v1.1b
Paracuda Excel Plug-In	
Model Settings	Dependent Variables :
Data Division DataSet Latin HyperCube 100000	InDependent Variables : Note (Optional) :
Iterations : Wavelengths : _	Credits to use per set :
Training Percent : 50 Include In Test : _	General Settings Model Se
Validation Percent : 25 Noise Level : Low	
Data Reduction Modeling Methods	
AS Transform	
PCA Advanced I PLS	
Wavelets Genetic Algorithms	
Random Veural Networks Advanced	
PreProcessing Hard Set Stop Conditions	
Smoothing Select Best Model by: RPD	
Absorbance Target R: 0	
Continuum Removal	
First Derivative Target RPD: 0	
Second Derivative	
Final Smoothing Save	

Novospec
Dependent Variables :
InDependent Variables :
Note (Optional) :
Credits to use per set : 100 Calculate Total Credits 300
General Settings Send Data

Soil Spectroscopy Course , Brno Czech Republic June 26-27,2013

x

Soil Spectroscopy Course, Brno Czech Republic June 26-27,2013

Parcuda : Comercial Solution for non professional users:

- 1) By credit (how much CPU time you want)
- 2) Send raw data (Refinance matrix and attributes)
- Get back the best model with information on: what manipulation stream yielded the best model, the model to be used on other data bases, statistic parameters,

Advantageous: No need to spend hours to find a model, No need to be professional statistician, No need to learn or purchase sophisticated software, send and forget.

